VIX option pricing through nonaffine GARCH dynamics and semianalytical formula

IF 1.8 4区 经济学 Q2 BUSINESS, FINANCE
Junting Liu, Qi Wang, Yuanyuan Zhang
{"title":"VIX option pricing through nonaffine GARCH dynamics and semianalytical formula","authors":"Junting Liu,&nbsp;Qi Wang,&nbsp;Yuanyuan Zhang","doi":"10.1002/fut.22504","DOIUrl":null,"url":null,"abstract":"<p>This paper develops analytical approximations for volatility index (VIX) option pricing under nonaffine generalized autoregressive conditional heteroskedasticity (GARCH) models as advocated by Christoffersen et al. We obtain the approximation formulae for pricing VIX options and then evaluate their performance with three expansions under four empirically well-tested models. Our numerical experiments find that the weighted <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>ℒ</mi>\n \n <mn>2</mn>\n </msup>\n </mrow>\n </mrow>\n <annotation> ${{\\rm{ {\\mathcal L} }}}^{2}$</annotation>\n </semantics></math> expansion generated by the fat-tailed weighting kernel can significantly reduce approximation error over the Gram-Charlier expansion; the Taylor expansion of conditional moments can lead to divergence for parameters with certain high persistence in the affine GARCH, nonlinear asymmetric GARCH, and Glosten-Jagannathan-Runkle GARCH models, while surviving during high persistence in the exponential GARCH.</p>","PeriodicalId":15863,"journal":{"name":"Journal of Futures Markets","volume":"44 7","pages":"1189-1223"},"PeriodicalIF":1.8000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Futures Markets","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fut.22504","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper develops analytical approximations for volatility index (VIX) option pricing under nonaffine generalized autoregressive conditional heteroskedasticity (GARCH) models as advocated by Christoffersen et al. We obtain the approximation formulae for pricing VIX options and then evaluate their performance with three expansions under four empirically well-tested models. Our numerical experiments find that the weighted 2 ${{\rm{ {\mathcal L} }}}^{2}$ expansion generated by the fat-tailed weighting kernel can significantly reduce approximation error over the Gram-Charlier expansion; the Taylor expansion of conditional moments can lead to divergence for parameters with certain high persistence in the affine GARCH, nonlinear asymmetric GARCH, and Glosten-Jagannathan-Runkle GARCH models, while surviving during high persistence in the exponential GARCH.

通过非参数 GARCH 动力学和半解析公式为 VIX 期权定价
本文根据 Christoffersen 等人提出的非参数广义自回归条件异方差(GARCH)模型,开发了波动率指数(VIX)期权定价的分析近似值。我们得到了 VIX 期权定价的近似公式,然后用四个经验证明良好的模型下的三种扩展来评估它们的性能。我们的数值实验发现,加权ℒ2${{\rm{ {\mathcal L}}}^{2}$ 是最有效的。}}^{2}$扩展相比 Gram-Charlier 扩展可以显著减少近似误差;条件矩的泰勒扩展在仿射 GARCH、非线性非对称 GARCH 和 Glosten-Jagannathan-Runkle GARCH 模型中会导致具有一定高持久性的参数发散,而在指数 GARCH 模型中则在高持久性期间存活。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Futures Markets
Journal of Futures Markets BUSINESS, FINANCE-
CiteScore
3.70
自引率
15.80%
发文量
91
期刊介绍: The Journal of Futures Markets chronicles the latest developments in financial futures and derivatives. It publishes timely, innovative articles written by leading finance academics and professionals. Coverage ranges from the highly practical to theoretical topics that include futures, derivatives, risk management and control, financial engineering, new financial instruments, hedging strategies, analysis of trading systems, legal, accounting, and regulatory issues, and portfolio optimization. This publication contains the very latest research from the top experts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信