Morita Equivalence and Morita Duality for Rings with Local Units and the Subcategory of Projective Unitary Modules

IF 0.6 4区 数学 Q3 MATHEMATICS
Ziba Fazelpour, Alireza Nasr-Isfahani
{"title":"Morita Equivalence and Morita Duality for Rings with Local Units and the Subcategory of Projective Unitary Modules","authors":"Ziba Fazelpour,&nbsp;Alireza Nasr-Isfahani","doi":"10.1007/s10485-024-09764-1","DOIUrl":null,"url":null,"abstract":"<div><p>We study Morita equivalence and Morita duality for rings with local units. We extend Auslander’s results on the theory of Morita equivalence and the Azumaya–Morita duality theorem to rings with local units. As a consequence, we give a version of Morita theorem and Azumaya–Morita duality theorem over rings with local units in terms of their full subcategory of finitely generated projective unitary modules and full subcategory of finitely generated injective unitary modules.\n</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Categorical Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10485-024-09764-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study Morita equivalence and Morita duality for rings with local units. We extend Auslander’s results on the theory of Morita equivalence and the Azumaya–Morita duality theorem to rings with local units. As a consequence, we give a version of Morita theorem and Azumaya–Morita duality theorem over rings with local units in terms of their full subcategory of finitely generated projective unitary modules and full subcategory of finitely generated injective unitary modules.

带局部单元的环的莫里塔等价性和莫里塔对偶性以及投影单元模子子类
我们研究具有局部单元的环的莫里塔等价性和莫里塔对偶性。我们将奥斯兰德关于莫里塔等价性理论和阿祖马亚-莫里塔对偶定理的结果扩展到有局部单元的环。因此,我们用有限生成的投影单元模块的全子类和有限生成的注入单元模块的全子类给出了有局部单元的环上的莫里塔定理和阿祖马亚-莫里塔对偶定理的版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
16.70%
发文量
29
审稿时长
>12 weeks
期刊介绍: Applied Categorical Structures focuses on applications of results, techniques and ideas from category theory to mathematics, physics and computer science. These include the study of topological and algebraic categories, representation theory, algebraic geometry, homological and homotopical algebra, derived and triangulated categories, categorification of (geometric) invariants, categorical investigations in mathematical physics, higher category theory and applications, categorical investigations in functional analysis, in continuous order theory and in theoretical computer science. In addition, the journal also follows the development of emerging fields in which the application of categorical methods proves to be relevant. Applied Categorical Structures publishes both carefully refereed research papers and survey papers. It promotes communication and increases the dissemination of new results and ideas among mathematicians and computer scientists who use categorical methods in their research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信