A Mathematical Framework for Quantum Hamiltonian Simulation and Duality

IF 1.4 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Harriet Apel, Toby Cubitt
{"title":"A Mathematical Framework for Quantum Hamiltonian Simulation and Duality","authors":"Harriet Apel, Toby Cubitt","doi":"10.1007/s00023-024-01432-3","DOIUrl":null,"url":null,"abstract":"<p>Analogue Hamiltonian simulation is a promising near-term application of quantum computing and has recently been put on a theoretical footing alongside experiencing wide-ranging experimental success. These ideas are closely related to the notion of duality in physics, whereby two superficially different theories are mathematically equivalent in some precise sense. However, existing characterisations of Hamiltonian simulations are not sufficiently general to extend to all dualities in physics. We give a generalised duality definition encompassing dualities transforming a strongly interacting system into a weak one and vice versa. We characterise the dual map on operators and states and prove equivalence ofduality formulated in terms of observables, partition functions and entropies. A building block is a strengthening of earlier results on entropy preserving maps—extensions of Wigner’s celebrated theorem- –to maps that are entropy preserving up to an additive constant. We show such maps decompose as a direct sum of unitary and antiunitary components conjugated by a further unitary, a result that may be of independent mathematical interest.</p>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"22 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://doi.org/10.1007/s00023-024-01432-3","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Analogue Hamiltonian simulation is a promising near-term application of quantum computing and has recently been put on a theoretical footing alongside experiencing wide-ranging experimental success. These ideas are closely related to the notion of duality in physics, whereby two superficially different theories are mathematically equivalent in some precise sense. However, existing characterisations of Hamiltonian simulations are not sufficiently general to extend to all dualities in physics. We give a generalised duality definition encompassing dualities transforming a strongly interacting system into a weak one and vice versa. We characterise the dual map on operators and states and prove equivalence ofduality formulated in terms of observables, partition functions and entropies. A building block is a strengthening of earlier results on entropy preserving maps—extensions of Wigner’s celebrated theorem- –to maps that are entropy preserving up to an additive constant. We show such maps decompose as a direct sum of unitary and antiunitary components conjugated by a further unitary, a result that may be of independent mathematical interest.

Abstract Image

量子哈密顿模拟与对偶的数学框架
类比哈密顿模拟是量子计算的一个前景广阔的近期应用,最近在取得广泛实验成功的同时,也在理论上得到了证实。这些想法与物理学中的对偶性概念密切相关,即两个表面上不同的理论在某种精确意义上是数学等价的。然而,现有的汉密尔顿模拟特征描述还不够普遍,无法扩展到物理学中的所有对偶性。我们给出了一个广义的对偶性定义,其中包括将强相互作用系统转化为弱相互作用系统的对偶性,反之亦然。我们描述了关于算子和状态的对偶映射的特征,并证明了用观测值、分区函数和熵来表述的对偶的等价性。我们将早先关于熵守恒映射的结果--维格纳著名定理的扩展--强化为熵守恒映射,直至一个加常数。我们表明,这种映射分解为由另一个单元共轭的单元和反单元成分的直接和,这一结果可能具有独立的数学意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annales Henri Poincaré
Annales Henri Poincaré 物理-物理:粒子与场物理
CiteScore
3.00
自引率
6.70%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society. The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信