The EENSANE (Eastern European Seismic Ambient Noise) project: providing a new free database of ambient noise cross-correlations and crustal seismic models in the Carpathian-Pannonian Region and beyond
Laura Petrescu, Anica Otilia Plăcintă, Felix Borleanu, Andrei Mihai, Mircea Radulian, Mihaela Popa, Alina Coman, Carmen Cioflan
{"title":"The EENSANE (Eastern European Seismic Ambient Noise) project: providing a new free database of ambient noise cross-correlations and crustal seismic models in the Carpathian-Pannonian Region and beyond","authors":"Laura Petrescu, Anica Otilia Plăcintă, Felix Borleanu, Andrei Mihai, Mircea Radulian, Mihaela Popa, Alina Coman, Carmen Cioflan","doi":"10.1007/s40328-024-00438-x","DOIUrl":null,"url":null,"abstract":"<p>Ambient seismic noise has proven to be a particularly effective tool for subsurface imaging in the last decades, with applications ranging from near surface imaging, to crustal or upper mantle tomography. Fundamentally, it relies on the cross correlations of continuous recordings of ground motion data at pairs of seismic stations. Processing steps have become more refined and promising in extracting meaningful signals that can further be used in a range of classic seismology tools. The processing, however, is usually cumbersome, time- and memory-consuming, as it requires years of continuous noise recorded at broadband seismic stations, to obtain high signal-to-noise ratio empirical Green’s functions. In order to ease the research effort, we built a database of ambient seismic noise cross correlations between pairs of broadband seismic stations that operated in Central and Eastern Europe between 1999 and 2020. The database is part of the Eastern European Ambient Seismic Noise (EENSANE) research project hosted by the National Institute of Earth Physics in Romania and will progressively grow as more stations become available, such as those provided by the new AdriaArray network. Based on this database and using state-of-the-art inversion techniques, we developed a series of near-surface and crustal tomography models of the Eastern European craton, the Trans-European Suture Zone and younger accreted terranes from Central Europe. Our integrated models provide both isotropic and azimuthally anisotropic seismic velocities from surface wave dispersion and attenuation parameters from the decay envelopes of Rayleigh waves. Using horizontal-to-vertical ratios of ambient noise, we also recovered the fundamental frequency of resonance and near surface shear wave velocity models beneath stations located across the Carpathian Orogen. Based on cross-correlation functions, we were also able to retrieve the seismic wavefield and peak ground displacement amplitudes from past earthquakes decades after their occurrence, offering a chance for improving seismic hazard and risk models in seismically vulnerable and developing regions of Europe. Our multidisciplinary results prove the versatility of ambient noise uses and the importance of the EENSANE database for a wide range of seismological imaging and hazard applications.</p>","PeriodicalId":48965,"journal":{"name":"Acta Geodaetica et Geophysica","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geodaetica et Geophysica","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s40328-024-00438-x","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Ambient seismic noise has proven to be a particularly effective tool for subsurface imaging in the last decades, with applications ranging from near surface imaging, to crustal or upper mantle tomography. Fundamentally, it relies on the cross correlations of continuous recordings of ground motion data at pairs of seismic stations. Processing steps have become more refined and promising in extracting meaningful signals that can further be used in a range of classic seismology tools. The processing, however, is usually cumbersome, time- and memory-consuming, as it requires years of continuous noise recorded at broadband seismic stations, to obtain high signal-to-noise ratio empirical Green’s functions. In order to ease the research effort, we built a database of ambient seismic noise cross correlations between pairs of broadband seismic stations that operated in Central and Eastern Europe between 1999 and 2020. The database is part of the Eastern European Ambient Seismic Noise (EENSANE) research project hosted by the National Institute of Earth Physics in Romania and will progressively grow as more stations become available, such as those provided by the new AdriaArray network. Based on this database and using state-of-the-art inversion techniques, we developed a series of near-surface and crustal tomography models of the Eastern European craton, the Trans-European Suture Zone and younger accreted terranes from Central Europe. Our integrated models provide both isotropic and azimuthally anisotropic seismic velocities from surface wave dispersion and attenuation parameters from the decay envelopes of Rayleigh waves. Using horizontal-to-vertical ratios of ambient noise, we also recovered the fundamental frequency of resonance and near surface shear wave velocity models beneath stations located across the Carpathian Orogen. Based on cross-correlation functions, we were also able to retrieve the seismic wavefield and peak ground displacement amplitudes from past earthquakes decades after their occurrence, offering a chance for improving seismic hazard and risk models in seismically vulnerable and developing regions of Europe. Our multidisciplinary results prove the versatility of ambient noise uses and the importance of the EENSANE database for a wide range of seismological imaging and hazard applications.
期刊介绍:
The journal publishes original research papers in the field of geodesy and geophysics under headings: aeronomy and space physics, electromagnetic studies, geodesy and gravimetry, geodynamics, geomathematics, rock physics, seismology, solid earth physics, history. Papers dealing with problems of the Carpathian region and its surroundings are preferred. Similarly, papers on topics traditionally covered by Hungarian geodesists and geophysicists (e.g. robust estimations, geoid, EM properties of the Earth’s crust, geomagnetic pulsations and seismological risk) are especially welcome.