Accelerated Forward-Backward Optimization Using Deep Learning

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
Sebastian Banert, Jevgenija Rudzusika, Ozan Öktem, Jonas Adler
{"title":"Accelerated Forward-Backward Optimization Using Deep Learning","authors":"Sebastian Banert, Jevgenija Rudzusika, Ozan Öktem, Jonas Adler","doi":"10.1137/22m1532548","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Optimization, Volume 34, Issue 2, Page 1236-1263, June 2024. <br/> Abstract. We propose several deep-learning accelerated optimization solvers with convergence guarantees. We use ideas from the analysis of accelerated forward-backward schemes like FISTA, but instead of the classical approach of proving convergence for a choice of parameters, such as a step-size, we show convergence whenever the update is chosen in a specific set. Rather than picking a point in this set using some predefined method, we train a deep neural network to pick the best update within a given space. Finally, we show that the method is applicable to several cases of smooth and nonsmooth optimization and show superior results to established accelerated solvers.","PeriodicalId":49529,"journal":{"name":"SIAM Journal on Optimization","volume":"31 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1532548","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Optimization, Volume 34, Issue 2, Page 1236-1263, June 2024.
Abstract. We propose several deep-learning accelerated optimization solvers with convergence guarantees. We use ideas from the analysis of accelerated forward-backward schemes like FISTA, but instead of the classical approach of proving convergence for a choice of parameters, such as a step-size, we show convergence whenever the update is chosen in a specific set. Rather than picking a point in this set using some predefined method, we train a deep neural network to pick the best update within a given space. Finally, we show that the method is applicable to several cases of smooth and nonsmooth optimization and show superior results to established accelerated solvers.
利用深度学习加速前向-后向优化
SIAM 优化期刊》,第 34 卷第 2 期,第 1236-1263 页,2024 年 6 月。 摘要我们提出了几种具有收敛性保证的深度学习加速优化求解器。我们使用了对 FISTA 等加速前向后向方案的分析思路,但我们并没有采用经典的方法来证明步长等参数选择的收敛性,而是证明了在特定集合中选择更新时的收敛性。我们不是使用某种预定义的方法在这个集合中选取一个点,而是训练一个深度神经网络,在给定的空间内选取最佳更新。最后,我们证明该方法适用于平滑和非平滑优化的几种情况,并显示出优于现有加速求解器的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
SIAM Journal on Optimization
SIAM Journal on Optimization 数学-应用数学
CiteScore
5.30
自引率
9.70%
发文量
101
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Optimization contains research articles on the theory and practice of optimization. The areas addressed include linear and quadratic programming, convex programming, nonlinear programming, complementarity problems, stochastic optimization, combinatorial optimization, integer programming, and convex, nonsmooth and variational analysis. Contributions may emphasize optimization theory, algorithms, software, computational practice, applications, or the links between these subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信