Hydrodynamic analysis of oscillating water column in the presence of seabed undulations

IF 2.7 4区 工程技术 Q2 ENGINEERING, CIVIL
Dasari Srinu, V. Venkateswarlu, K. G. Vijay, M. A. Atmanand
{"title":"Hydrodynamic analysis of oscillating water column in the presence of seabed undulations","authors":"Dasari Srinu, V. Venkateswarlu, K. G. Vijay, M. A. Atmanand","doi":"10.1007/s00773-024-00994-5","DOIUrl":null,"url":null,"abstract":"<p>The present numerical investigation evaluates the significance of seabed undulations on the efficiency of an oscillating water column (OWC) device. The proposed physical problem is formulated in a two-dimensional Cartesian coordinate system under the framework of linearized potential flow theory. The numerical model based on the dual-boundary integral equation method (DBEM) is employed to solve the boundary value problem (BVP), and the study presents the hydrodynamic coefficients of the OWC device in the presence of a composite wavy seabed. Various effects such as the effect of seabed undulations, OWC configuration, chamber spacing, partial rotation of lip-wall, and lip-wall draft on the system radiation coefficients (i.e., wave energy capturing efficiency, radiation susceptance, and conductance) and wall force coefficient is presented against the relative wave frequency. The numerical results indicate that the efficiency of OWC is a trivariate function, which depends upon incident wave frequency, lip-wall rotation, and chamber spacing. The comparative study between various types of OWC devices (i.e., lip-wall configurations) is reported against relative wave frequency in the presence of bottom undulations. The peak performance of OWC is plausible using the resonance mechanism concept when the chamber spacing is moderate and lip-wall is either seaside horizontal or seaside partially inclined.</p>","PeriodicalId":16334,"journal":{"name":"Journal of Marine Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00773-024-00994-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

The present numerical investigation evaluates the significance of seabed undulations on the efficiency of an oscillating water column (OWC) device. The proposed physical problem is formulated in a two-dimensional Cartesian coordinate system under the framework of linearized potential flow theory. The numerical model based on the dual-boundary integral equation method (DBEM) is employed to solve the boundary value problem (BVP), and the study presents the hydrodynamic coefficients of the OWC device in the presence of a composite wavy seabed. Various effects such as the effect of seabed undulations, OWC configuration, chamber spacing, partial rotation of lip-wall, and lip-wall draft on the system radiation coefficients (i.e., wave energy capturing efficiency, radiation susceptance, and conductance) and wall force coefficient is presented against the relative wave frequency. The numerical results indicate that the efficiency of OWC is a trivariate function, which depends upon incident wave frequency, lip-wall rotation, and chamber spacing. The comparative study between various types of OWC devices (i.e., lip-wall configurations) is reported against relative wave frequency in the presence of bottom undulations. The peak performance of OWC is plausible using the resonance mechanism concept when the chamber spacing is moderate and lip-wall is either seaside horizontal or seaside partially inclined.

Abstract Image

存在海床起伏的振荡水柱的水动力分析
本数值研究评估了海底起伏对振荡水柱(OWC)装置效率的影响。所提出的物理问题是在线性化势流理论框架下的二维笛卡尔坐标系中提出的。研究采用基于双边界积分方程法(DBEM)的数值模型来求解边界值问题(BVP),并给出了在复合波浪形海床存在的情况下 OWC 装置的水动力系数。海床起伏、OWC 配置、腔室间距、唇壁部分旋转和唇壁吃水等因素对系统辐射系数(即波能捕获效率、辐射感抗和电导率)和壁力系数的影响与相对波频的关系进行了比较。数值结果表明,OWC 的效率是一个三元函数,取决于入射波频率、唇壁旋转和腔室间距。报告了各种类型的 OWC 设备(即唇壁配置)在底部起伏情况下与相对波频的比较研究。当腔室间距适中且唇壁为海边水平或海边部分倾斜时,利用共振机制概念,OWC 的峰值性能是合理的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Marine Science and Technology
Journal of Marine Science and Technology 工程技术-工程:海洋
CiteScore
5.60
自引率
3.80%
发文量
47
审稿时长
7.5 months
期刊介绍: The Journal of Marine Science and Technology (JMST), presently indexed in EI and SCI Expanded, publishes original, high-quality, peer-reviewed research papers on marine studies including engineering, pure and applied science, and technology. The full text of the published papers is also made accessible at the JMST website to allow a rapid circulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信