{"title":"Kohn–Rossi cohomology of spherical CR manifolds","authors":"Yuya Takeuchi","doi":"10.1007/s10455-024-09952-1","DOIUrl":null,"url":null,"abstract":"<div><p>We prove some vanishing theorems for the Kohn–Rossi cohomology of some spherical CR manifolds. To this end, we use a canonical contact form defined via the Patterson–Sullivan measure and Weitzenböck-type formulae for the Kohn Laplacian. We also see that our results are optimal in some cases.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-024-09952-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We prove some vanishing theorems for the Kohn–Rossi cohomology of some spherical CR manifolds. To this end, we use a canonical contact form defined via the Patterson–Sullivan measure and Weitzenböck-type formulae for the Kohn Laplacian. We also see that our results are optimal in some cases.
期刊介绍:
This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field.
The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.