{"title":"An Entropy Stable Essentially Oscillation-Free Discontinuous Galerkin Method for Hyperbolic Conservation Laws","authors":"Yong Liu, Jianfang Lu, Chi-Wang Shu","doi":"10.1137/22m1524151","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 2, Page A1132-A1159, April 2024. <br/> Abstract. Entropy inequalities are crucial to the well-posedness of hyperbolic conservation laws, which help to select the physically meaningful one from among the infinite many weak solutions. Recently, several high order discontinuous Galerkin (DG) methods satisfying entropy inequalities were proposed; see [T. Chen and C.-W. Shu, J. Comput. Phys., 345 (2017), pp. 427–461; J. Chan, J. Comput. Phys., 362 (2018), pp. 346–374; T. Chen and C.-W. Shu, CSIAM Trans. Appl. Math., 1 (2020), pp. 1–52] and the references therein. However, high order numerical methods typically generate spurious oscillations in the presence of shock discontinuities. In this paper, we construct a high order entropy stable essentially oscillation-free DG (OFDG) method for hyperbolic conservation laws. With some suitable modification on the high order damping term introduced in [J. Lu, Y. Liu, and C.-W. Shu, SIAM J. Numer. Anal., 59 (2021), pp. 1299–1324; Y. Liu, J. Lu, and C.-W. Shu, SIAM J. Sci. Comput., 44 (2022), pp. A230–A259], we are able to construct an OFDG scheme with dissipative entropy. It is challenging to make the damping term compatible with the current entropy stable DG framework, that is, the damping term should be dissipative for any given entropy function without compromising high order accuracy. The key ingredient is to utilize the convexity of the entropy function and the orthogonality of the projection. Then the proposed method maintains the same properties of conservation, error estimates, and entropy dissipation as the original entropy stable DG method. Extensive numerical experiments are presented to validate the theoretical findings and the capability of controlling spurious oscillations of the proposed algorithm.","PeriodicalId":49526,"journal":{"name":"SIAM Journal on Scientific Computing","volume":"53 97 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1524151","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Scientific Computing, Volume 46, Issue 2, Page A1132-A1159, April 2024. Abstract. Entropy inequalities are crucial to the well-posedness of hyperbolic conservation laws, which help to select the physically meaningful one from among the infinite many weak solutions. Recently, several high order discontinuous Galerkin (DG) methods satisfying entropy inequalities were proposed; see [T. Chen and C.-W. Shu, J. Comput. Phys., 345 (2017), pp. 427–461; J. Chan, J. Comput. Phys., 362 (2018), pp. 346–374; T. Chen and C.-W. Shu, CSIAM Trans. Appl. Math., 1 (2020), pp. 1–52] and the references therein. However, high order numerical methods typically generate spurious oscillations in the presence of shock discontinuities. In this paper, we construct a high order entropy stable essentially oscillation-free DG (OFDG) method for hyperbolic conservation laws. With some suitable modification on the high order damping term introduced in [J. Lu, Y. Liu, and C.-W. Shu, SIAM J. Numer. Anal., 59 (2021), pp. 1299–1324; Y. Liu, J. Lu, and C.-W. Shu, SIAM J. Sci. Comput., 44 (2022), pp. A230–A259], we are able to construct an OFDG scheme with dissipative entropy. It is challenging to make the damping term compatible with the current entropy stable DG framework, that is, the damping term should be dissipative for any given entropy function without compromising high order accuracy. The key ingredient is to utilize the convexity of the entropy function and the orthogonality of the projection. Then the proposed method maintains the same properties of conservation, error estimates, and entropy dissipation as the original entropy stable DG method. Extensive numerical experiments are presented to validate the theoretical findings and the capability of controlling spurious oscillations of the proposed algorithm.
期刊介绍:
The purpose of SIAM Journal on Scientific Computing (SISC) is to advance computational methods for solving scientific and engineering problems.
SISC papers are classified into three categories:
1. Methods and Algorithms for Scientific Computing: Papers in this category may include theoretical analysis, provided that the relevance to applications in science and engineering is demonstrated. They should contain meaningful computational results and theoretical results or strong heuristics supporting the performance of new algorithms.
2. Computational Methods in Science and Engineering: Papers in this section will typically describe novel methodologies for solving a specific problem in computational science or engineering. They should contain enough information about the application to orient other computational scientists but should omit details of interest mainly to the applications specialist.
3. Software and High-Performance Computing: Papers in this category should concern the novel design and development of computational methods and high-quality software, parallel algorithms, high-performance computing issues, new architectures, data analysis, or visualization. The primary focus should be on computational methods that have potentially large impact for an important class of scientific or engineering problems.