Optimality and constructions of spanning bipartite block designs

IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY
Metrika Pub Date : 2024-04-10 DOI:10.1007/s00184-024-00963-3
Shoko Chisaki, Ryoh Fuji-Hara, Nobuko Miyamoto
{"title":"Optimality and constructions of spanning bipartite block designs","authors":"Shoko Chisaki, Ryoh Fuji-Hara, Nobuko Miyamoto","doi":"10.1007/s00184-024-00963-3","DOIUrl":null,"url":null,"abstract":"<p>We consider a statistical problem to estimate variables (effects) that are associated with the edges of a complete bipartite graph <span>\\(K_{v_1, v_2}=(V_1, V_2;E)\\)</span>. Each data is obtained as a sum of selected effects, a subset of <i>E</i>. To estimate efficiently, we propose a design called Spanning Bipartite Block Design (SBBD). For SBBDs such that the effects are estimable, we proved that the estimators have the same variance (variance balanced). If each block (a subgraph of <span>\\(K_{v_1, v_2}\\)</span>) of SBBD is a semi-regular or a regular bipartite graph, we show that the design is A-optimum. We also show a construction of SBBD using an (<span>\\(r,\\lambda \\)</span>)-design and an ordered design. A BIBD with prime power blocks gives an A-optimum semi-regular or regular SBBD.</p>","PeriodicalId":49821,"journal":{"name":"Metrika","volume":"84 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00184-024-00963-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a statistical problem to estimate variables (effects) that are associated with the edges of a complete bipartite graph \(K_{v_1, v_2}=(V_1, V_2;E)\). Each data is obtained as a sum of selected effects, a subset of E. To estimate efficiently, we propose a design called Spanning Bipartite Block Design (SBBD). For SBBDs such that the effects are estimable, we proved that the estimators have the same variance (variance balanced). If each block (a subgraph of \(K_{v_1, v_2}\)) of SBBD is a semi-regular or a regular bipartite graph, we show that the design is A-optimum. We also show a construction of SBBD using an (\(r,\lambda \))-design and an ordered design. A BIBD with prime power blocks gives an A-optimum semi-regular or regular SBBD.

Abstract Image

跨两方块设计的最优性和构造
我们考虑了一个统计问题,即如何估计与完整双栅格图 \(K_{v_1,v_2}=(V_1,V_2;E)\)的边相关联的变量(效应)。每个数据都是所选效应的总和,是 E 的一个子集。为了高效估算,我们提出了一种称为跨双栅格块设计(SBBD)的设计方法。对于可估算效应的 SBBD,我们证明了估算器具有相同的方差(方差平衡)。如果 SBBD 的每个块(\(K_{v_1, v_2}\) 的一个子图)都是半规则或规则的双栅格图,我们证明该设计是 A-最优的。我们还展示了一种使用(\(r,\lambda \))设计和有序设计来构造 SBBD 的方法。一个具有质数幂块的 BIBD 给出了一个 A-最优的半规则或规则 SBBD。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Metrika
Metrika 数学-统计学与概率论
CiteScore
1.50
自引率
14.30%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Metrika is an international journal for theoretical and applied statistics. Metrika publishes original research papers in the field of mathematical statistics and statistical methods. Great importance is attached to new developments in theoretical statistics, statistical modeling and to actual innovative applicability of the proposed statistical methods and results. Topics of interest include, without being limited to, multivariate analysis, high dimensional statistics and nonparametric statistics; categorical data analysis and latent variable models; reliability, lifetime data analysis and statistics in engineering sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信