Monitoring covariance in multivariate time series: Comparing machine learning and statistical approaches

IF 2.2 3区 工程技术 Q3 ENGINEERING, INDUSTRIAL
Derek Weix, Tzahi Y. Cath, Amanda S. Hering
{"title":"Monitoring covariance in multivariate time series: Comparing machine learning and statistical approaches","authors":"Derek Weix, Tzahi Y. Cath, Amanda S. Hering","doi":"10.1002/qre.3551","DOIUrl":null,"url":null,"abstract":"In complex systems with multiple variables monitored at high‐frequency, variables are not only temporally autocorrelated, but they may also be nonlinearly related or exhibit nonstationarity as the inputs or operation changes. One approach to handling such variables is to detrend them prior to monitoring and then apply control charts that assume independence and stationarity to the residuals. Monitoring controlled systems is even more challenging because the control strategy seeks to maintain variables at prespecified mean levels, and to compensate, correlations among variables may change, making monitoring the covariance essential. In this paper, a vector autoregressive model (VAR) is compared with a multivariate random forest (MRF) and a neural network (NN) for detrending multivariate time series prior to monitoring the covariance of the residuals using a multivariate exponentially weighted moving average (MEWMA) control chart. Machine learning models have an advantage when the data's structure is unknown or may change. We design a novel simulation study with nonlinear, nonstationary, and autocorrelated data to compare the different detrending models and subsequent covariance monitoring. The machine learning models have superior performance for nonlinear and strongly autocorrelated data and similar performance for linear data. An illustration with data from a reverse osmosis process is given.","PeriodicalId":56088,"journal":{"name":"Quality and Reliability Engineering International","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality and Reliability Engineering International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/qre.3551","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

In complex systems with multiple variables monitored at high‐frequency, variables are not only temporally autocorrelated, but they may also be nonlinearly related or exhibit nonstationarity as the inputs or operation changes. One approach to handling such variables is to detrend them prior to monitoring and then apply control charts that assume independence and stationarity to the residuals. Monitoring controlled systems is even more challenging because the control strategy seeks to maintain variables at prespecified mean levels, and to compensate, correlations among variables may change, making monitoring the covariance essential. In this paper, a vector autoregressive model (VAR) is compared with a multivariate random forest (MRF) and a neural network (NN) for detrending multivariate time series prior to monitoring the covariance of the residuals using a multivariate exponentially weighted moving average (MEWMA) control chart. Machine learning models have an advantage when the data's structure is unknown or may change. We design a novel simulation study with nonlinear, nonstationary, and autocorrelated data to compare the different detrending models and subsequent covariance monitoring. The machine learning models have superior performance for nonlinear and strongly autocorrelated data and similar performance for linear data. An illustration with data from a reverse osmosis process is given.
监测多元时间序列中的协方差:比较机器学习和统计方法
在高频率监测多个变量的复杂系统中,变量不仅存在时间上的自相关性,还可能存在非线性关系,或随着输入或操作的变化而表现出非静止性。处理此类变量的一种方法是在监测前对它们进行去趋势处理,然后应用控制图,假定残差具有独立性和静止性。监控受控系统更具挑战性,因为控制策略旨在将变量维持在预先指定的均值水平,而为了补偿,变量之间的相关性可能会发生变化,因此监控协方差至关重要。本文比较了矢量自回归模型(VAR)、多元随机森林(MRF)和神经网络(NN)在使用多元指数加权移动平均(MEWMA)控制图监测残差协方差之前对多元时间序列进行去趋势的方法。当数据结构未知或可能发生变化时,机器学习模型具有优势。我们利用非线性、非平稳和自相关数据设计了一项新颖的模拟研究,以比较不同的去趋势模型和随后的协方差监测。机器学习模型在处理非线性和强自相关数据时性能优越,在处理线性数据时性能相似。以反渗透过程的数据为例进行说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
21.70%
发文量
181
审稿时长
6 months
期刊介绍: Quality and Reliability Engineering International is a journal devoted to practical engineering aspects of quality and reliability. A refereed technical journal published eight times per year, it covers the development and practical application of existing theoretical methods, research and industrial practices. Articles in the journal will be concerned with case studies, tutorial-type reviews and also with applications of new or well-known theory to the solution of actual quality and reliability problems in engineering. Papers describing the use of mathematical and statistical tools to solve real life industrial problems are encouraged, provided that the emphasis is placed on practical applications and demonstrated case studies. The scope of the journal is intended to include components, physics of failure, equipment and systems from the fields of electronic, electrical, mechanical and systems engineering. The areas of communications, aerospace, automotive, railways, shipboard equipment, control engineering and consumer products are all covered by the journal. Quality and reliability of hardware as well as software are covered. Papers on software engineering and its impact on product quality and reliability are encouraged. The journal will also cover the management of quality and reliability in the engineering industry. Special issues on a variety of key topics are published every year and contribute to the enhancement of Quality and Reliability Engineering International as a major reference in its field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信