{"title":"A new technique for improving performance of conventional CRLH resonators using IDC/UISs with enhanced harmonic suppression in balanced dual-band BPFs","authors":"Reza Eskandari, Mohammadbagher Tavakoli, Farbod Setoudeh, Ashkan Horri, Seyed Peyman Faghir Mirnezami","doi":"10.1515/freq-2023-0409","DOIUrl":null,"url":null,"abstract":"The design of balanced filters based on composite right/left hand (CRLH) structure is well developed. Among those, few designs exist which although they provide some good responses, suffer from narrow stopbands and interdependent passbands. This paper proposes a new technique for improving the characteristics of dual-band balanced bandpass filters (B-BPFs) based on planar CRLH. Using unequal inductive stubs (UISs) attached to the interdigital capacitor (IDC) unit cell, we were able to achieve outstanding harmonic suppression and passband controllability. This structure offers higher degrees of freedom compared to conventional designs and provides better control over the filter specifications. Mathematical modeling, analysis, simulation, fabrication, and performance measurement of the proposed technique in a dual-band B-BPF are also provided. Our work resulted in an independent and controllable dual-band B-BPF with ultra-wide upper differential-mode (DM) stopband of 5.9<jats:italic>f</jats:italic> <jats:sub>1</jats:sub> and common-mode (CM) suppression of 40.4 and 32.6 dB for the first and second bands, respectively.","PeriodicalId":55143,"journal":{"name":"Frequenz","volume":"18 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frequenz","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/freq-2023-0409","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The design of balanced filters based on composite right/left hand (CRLH) structure is well developed. Among those, few designs exist which although they provide some good responses, suffer from narrow stopbands and interdependent passbands. This paper proposes a new technique for improving the characteristics of dual-band balanced bandpass filters (B-BPFs) based on planar CRLH. Using unequal inductive stubs (UISs) attached to the interdigital capacitor (IDC) unit cell, we were able to achieve outstanding harmonic suppression and passband controllability. This structure offers higher degrees of freedom compared to conventional designs and provides better control over the filter specifications. Mathematical modeling, analysis, simulation, fabrication, and performance measurement of the proposed technique in a dual-band B-BPF are also provided. Our work resulted in an independent and controllable dual-band B-BPF with ultra-wide upper differential-mode (DM) stopband of 5.9f1 and common-mode (CM) suppression of 40.4 and 32.6 dB for the first and second bands, respectively.
期刊介绍:
Frequenz is one of the leading scientific and technological journals covering all aspects of RF-, Microwave-, and THz-Engineering. It is a peer-reviewed, bi-monthly published journal.
Frequenz was first published in 1947 with a circulation of 7000 copies, focusing on telecommunications. Today, the major objective of Frequenz is to highlight current research activities and development efforts in RF-, Microwave-, and THz-Engineering throughout a wide frequency spectrum ranging from radio via microwave up to THz frequencies.
RF-, Microwave-, and THz-Engineering is a very active area of Research & Development as well as of Applications in a wide variety of fields. It has been the key to enabling technologies responsible for phenomenal growth of satellite broadcasting, wireless communications, satellite and terrestrial mobile communications and navigation, high-speed THz communication systems. It will open up new technologies in communications, radar, remote sensing and imaging, in identification and localization as well as in sensors, e.g. for wireless industrial process and environmental monitoring as well as for biomedical sensing.