A Novel Approach for Delivery of Ergosterol Within Ferritin Cage: Stability, Slow-Release Property, and Cholesterol-Lowering Effect After Simulated Gastrointestinal Digestion
{"title":"A Novel Approach for Delivery of Ergosterol Within Ferritin Cage: Stability, Slow-Release Property, and Cholesterol-Lowering Effect After Simulated Gastrointestinal Digestion","authors":"Haoyu Yang, Yuanhao Guo, Shengnan Wang, Kai Lin, Yaxin Wang, Jiangyan Hou, Jinling Cao, Yanfen Cheng, Feier Cheng, Shaojun Yun, Cuiping Feng","doi":"10.1007/s11483-024-09834-w","DOIUrl":null,"url":null,"abstract":"<div><p>Ergosterol possesses a variety of physiological activities, however, its application is limited due to its poor water solubility and photosensitivity. In this study, by using the ultrasonic-assisted heating method, recombinant human H-ferritin (rHuHF)–ergosterol nanocomposites (FEs) were designed, and after the characterization, the light stability, serum stability, sustained release character, and cholesterol-lowering property in vitro were analyzed. The results showed that FEs maintained a spherical morphology with the same particle size as rHuHF. About 17 ergosterol molecules were successfully encapsulated in one ferritin molecule with an encapsulation rate of (27.28 ± 0.29)% and a drug loading of (1.63 ± 0.02)%. The light stability of FEs was increased compared with free ergosterol molecules. The FEs also exhibited good serum stability. The results of simulated gastrointestinal digestion indicated that the rHuHF cage was able to prolong the release of ergosterols. FEs digesta can reduce the solubility of cholesterol in micelles. Additionally, molecular docking displayed that ergosterol can competitively inhibit cholesterol binding to human Niemann-Pick C1-Like 1 (NPC1L1), which might play an important role in preventing the delivery of cholesterol to the membrane for accumulation. This work offers an approach to encapsulate and deliver ergosterol depending on the advantage of ferritin nanocage, which has the potential to be applied in food industry.</p></div>","PeriodicalId":564,"journal":{"name":"Food Biophysics","volume":"19 4","pages":"872 - 884"},"PeriodicalIF":2.8000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Biophysics","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s11483-024-09834-w","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ergosterol possesses a variety of physiological activities, however, its application is limited due to its poor water solubility and photosensitivity. In this study, by using the ultrasonic-assisted heating method, recombinant human H-ferritin (rHuHF)–ergosterol nanocomposites (FEs) were designed, and after the characterization, the light stability, serum stability, sustained release character, and cholesterol-lowering property in vitro were analyzed. The results showed that FEs maintained a spherical morphology with the same particle size as rHuHF. About 17 ergosterol molecules were successfully encapsulated in one ferritin molecule with an encapsulation rate of (27.28 ± 0.29)% and a drug loading of (1.63 ± 0.02)%. The light stability of FEs was increased compared with free ergosterol molecules. The FEs also exhibited good serum stability. The results of simulated gastrointestinal digestion indicated that the rHuHF cage was able to prolong the release of ergosterols. FEs digesta can reduce the solubility of cholesterol in micelles. Additionally, molecular docking displayed that ergosterol can competitively inhibit cholesterol binding to human Niemann-Pick C1-Like 1 (NPC1L1), which might play an important role in preventing the delivery of cholesterol to the membrane for accumulation. This work offers an approach to encapsulate and deliver ergosterol depending on the advantage of ferritin nanocage, which has the potential to be applied in food industry.
期刊介绍:
Biophysical studies of foods and agricultural products involve research at the interface of chemistry, biology, and engineering, as well as the new interdisciplinary areas of materials science and nanotechnology. Such studies include but are certainly not limited to research in the following areas: the structure of food molecules, biopolymers, and biomaterials on the molecular, microscopic, and mesoscopic scales; the molecular basis of structure generation and maintenance in specific foods, feeds, food processing operations, and agricultural products; the mechanisms of microbial growth, death and antimicrobial action; structure/function relationships in food and agricultural biopolymers; novel biophysical techniques (spectroscopic, microscopic, thermal, rheological, etc.) for structural and dynamical characterization of food and agricultural materials and products; the properties of amorphous biomaterials and their influence on chemical reaction rate, microbial growth, or sensory properties; and molecular mechanisms of taste and smell.
A hallmark of such research is a dependence on various methods of instrumental analysis that provide information on the molecular level, on various physical and chemical theories used to understand the interrelations among biological molecules, and an attempt to relate macroscopic chemical and physical properties and biological functions to the molecular structure and microscopic organization of the biological material.