Transference for loose Hamilton cycles in random 3-uniform hypergraphs

Kalina Petrova, Miloš Trujić
{"title":"Transference for loose Hamilton cycles in random 3-uniform hypergraphs","authors":"Kalina Petrova, Miloš Trujić","doi":"10.1002/rsa.21216","DOIUrl":null,"url":null,"abstract":"A loose Hamilton cycle in a hypergraph is a cyclic sequence of edges covering all vertices in which only every two consecutive edges intersect and do so in exactly one vertex. With Dirac's theorem in mind, it is natural to ask what minimum <span data-altimg=\"/cms/asset/96bf6800-4a53-4fcf-aa7b-a11ff802fdc1/rsa21216-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"1746\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/rsa21216-math-0001.png\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"d\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:rsa:media:rsa21216:rsa21216-math-0001\" display=\"inline\" location=\"graphic/rsa21216-math-0001.png\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"latinletter\" data-semantic-speech=\"d\" data-semantic-type=\"identifier\">d</mi></mrow>$$ d $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>-degree condition guarantees the existence of a loose Hamilton cycle in a <span data-altimg=\"/cms/asset/e14262ab-ac20-4578-be3f-bbe30fc08b73/rsa21216-math-0002.png\"></span><mjx-container ctxtmenu_counter=\"1747\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/rsa21216-math-0002.png\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"k\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:rsa:media:rsa21216:rsa21216-math-0002\" display=\"inline\" location=\"graphic/rsa21216-math-0002.png\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"latinletter\" data-semantic-speech=\"k\" data-semantic-type=\"identifier\">k</mi></mrow>$$ k $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>-uniform hypergraph. For <span data-altimg=\"/cms/asset/03c2dae8-8d2b-4c90-a6ec-2587395b51ad/rsa21216-math-0003.png\"></span><mjx-container ctxtmenu_counter=\"1748\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/rsa21216-math-0003.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-role=\"equality\" data-semantic-speech=\"k equals 3\" data-semantic-type=\"relseq\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"3\" data-semantic-role=\"equality\" data-semantic-type=\"relation\" rspace=\"5\" space=\"5\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:rsa:media:rsa21216:rsa21216-math-0003\" display=\"inline\" location=\"graphic/rsa21216-math-0003.png\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic-role=\"equality\" data-semantic-speech=\"k equals 3\" data-semantic-type=\"relseq\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">k</mi><mo data-semantic-=\"\" data-semantic-operator=\"relseq,=\" data-semantic-parent=\"3\" data-semantic-role=\"equality\" data-semantic-type=\"relation\">=</mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\">3</mn></mrow>$$ k=3 $$</annotation></semantics></math></mjx-assistive-mml></mjx-container> and each <span data-altimg=\"/cms/asset/e6b6f63c-2ad0-44eb-aa8e-f1176ef1a67c/rsa21216-math-0004.png\"></span><mjx-container ctxtmenu_counter=\"1749\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/rsa21216-math-0004.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"0,8\" data-semantic-content=\"1\" data-semantic- data-semantic-role=\"element\" data-semantic-speech=\"d element of StartSet 1 comma 2 EndSet\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"infixop,∈\" data-semantic-parent=\"9\" data-semantic-role=\"element\" data-semantic-type=\"operator\" rspace=\"5\" space=\"5\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"7\" data-semantic-content=\"2,6\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"set collection\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"8\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"3,4,5\" data-semantic-content=\"4\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"sequence\" data-semantic-type=\"punctuated\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"7\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\" rspace=\"3\" style=\"margin-left: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"8\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:rsa:media:rsa21216:rsa21216-math-0004\" display=\"inline\" location=\"graphic/rsa21216-math-0004.png\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"0,8\" data-semantic-content=\"1\" data-semantic-role=\"element\" data-semantic-speech=\"d element of StartSet 1 comma 2 EndSet\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">d</mi><mo data-semantic-=\"\" data-semantic-operator=\"infixop,∈\" data-semantic-parent=\"9\" data-semantic-role=\"element\" data-semantic-type=\"operator\">∈</mo><mrow data-semantic-=\"\" data-semantic-children=\"7\" data-semantic-content=\"2,6\" data-semantic-parent=\"9\" data-semantic-role=\"set collection\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"8\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">{</mo><mrow data-semantic-=\"\" data-semantic-children=\"3,4,5\" data-semantic-content=\"4\" data-semantic-parent=\"8\" data-semantic-role=\"sequence\" data-semantic-type=\"punctuated\"><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\">1</mn><mo data-semantic-=\"\" data-semantic-operator=\"punctuated\" data-semantic-parent=\"7\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\">,</mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\">2</mn></mrow><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"8\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">}</mo></mrow></mrow>$$ d\\in \\left\\{1,2\\right\\} $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, the necessary and sufficient such condition is known precisely. We show that these results adhere to a ‘transference principle’ to their sparse random analogues. The proof combines several ideas from the graph setting and relies on the absorbing method. In particular, we employ a novel approach of Kwan and Ferber for finding absorbers in subgraphs of sparse hypergraphs via a contraction procedure. In the case of <span data-altimg=\"/cms/asset/2b7653d8-9656-49c2-ad12-7afeb4f3ff57/rsa21216-math-0005.png\"></span><mjx-container ctxtmenu_counter=\"1750\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/rsa21216-math-0005.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-role=\"equality\" data-semantic-speech=\"d equals 2\" data-semantic-type=\"relseq\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"3\" data-semantic-role=\"equality\" data-semantic-type=\"relation\" rspace=\"5\" space=\"5\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:rsa:media:rsa21216:rsa21216-math-0005\" display=\"inline\" location=\"graphic/rsa21216-math-0005.png\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic-role=\"equality\" data-semantic-speech=\"d equals 2\" data-semantic-type=\"relseq\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">d</mi><mo data-semantic-=\"\" data-semantic-operator=\"relseq,=\" data-semantic-parent=\"3\" data-semantic-role=\"equality\" data-semantic-type=\"relation\">=</mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\">2</mn></mrow>$$ d=2 $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, our findings are asymptotically optimal.","PeriodicalId":20948,"journal":{"name":"Random Structures and Algorithms","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/rsa.21216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A loose Hamilton cycle in a hypergraph is a cyclic sequence of edges covering all vertices in which only every two consecutive edges intersect and do so in exactly one vertex. With Dirac's theorem in mind, it is natural to ask what minimum d$$ d $$-degree condition guarantees the existence of a loose Hamilton cycle in a k$$ k $$-uniform hypergraph. For k=3$$ k=3 $$ and each d{1,2}$$ d\in \left\{1,2\right\} $$, the necessary and sufficient such condition is known precisely. We show that these results adhere to a ‘transference principle’ to their sparse random analogues. The proof combines several ideas from the graph setting and relies on the absorbing method. In particular, we employ a novel approach of Kwan and Ferber for finding absorbers in subgraphs of sparse hypergraphs via a contraction procedure. In the case of d=2$$ d=2 $$, our findings are asymptotically optimal.
随机 3-Uniform 超图中松散汉密尔顿循环的转移
超图中的松散汉密尔顿循环是指覆盖所有顶点的边的循环序列,其中只有每两条连续的边相交,而且恰好在一个顶点上相交。考虑到狄拉克定理,我们自然会问,在 k$$ k $$均匀超图中,保证松散汉密尔顿循环存在的最小 d$$ d $$度条件是什么。对于 k=3$$ k=3 $$ 和每个 d∈{1,2}$ d\in \left\{1,2\right\} $$,这样的必要条件和充分条件是已知的。我们证明,这些结果与它们的稀疏随机类比结果遵循 "转移原则"。证明结合了图环境中的几个想法,并依赖于吸收方法。特别是,我们采用了 Kwan 和 Ferber 的一种新方法,通过收缩过程在稀疏超图的子图中找到吸收体。在 d=2$$ d=2$$ 的情况下,我们的发现是渐近最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信