{"title":"Diffusion-Drift Model of the Surface Glow Discharge in Supersonic Gas Flow","authors":"S. T. Surzhikov","doi":"10.1134/S0015462823602346","DOIUrl":null,"url":null,"abstract":"<p>The two-dimensional electrogasdynamic problem of anomalous glow discharge on the surface of a sharp plate in supersonic flow of a perfect gas is solved using the system of Navier–Stokes equations to describe thermogasdynamic processes in the boundary layer and the two-temperature two-fluid diffusion-drift model of gas-discharge plasma to determine the electrodynamic structure of the discharge. The near-electrode regions of space charge and the external electrical circuit consisting of a power source and an ohmic resistance are taken into account. The influence of the magnetic field which is transverse to gas flow and has the induction of up to 0.03 T on the structure of boundary layer and glow discharge is studied. The electrogasdynamic structure of anomalous near-surface discharges is studied numerically over a wide range of gas flow velocities (M = 5–20), the free-stream pressures (<i>p</i> = 0.6–5 Torr), the electrode voltages, and the electric currents through the discharges. The electrodynamic structure of the gas-plasma flow near the electrodes and the effect of the glow discharge on the pressure and temperature distributions along the surface of the plate are also studied.</p>","PeriodicalId":560,"journal":{"name":"Fluid Dynamics","volume":"59 1","pages":"145 - 168"},"PeriodicalIF":1.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0015462823602346","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The two-dimensional electrogasdynamic problem of anomalous glow discharge on the surface of a sharp plate in supersonic flow of a perfect gas is solved using the system of Navier–Stokes equations to describe thermogasdynamic processes in the boundary layer and the two-temperature two-fluid diffusion-drift model of gas-discharge plasma to determine the electrodynamic structure of the discharge. The near-electrode regions of space charge and the external electrical circuit consisting of a power source and an ohmic resistance are taken into account. The influence of the magnetic field which is transverse to gas flow and has the induction of up to 0.03 T on the structure of boundary layer and glow discharge is studied. The electrogasdynamic structure of anomalous near-surface discharges is studied numerically over a wide range of gas flow velocities (M = 5–20), the free-stream pressures (p = 0.6–5 Torr), the electrode voltages, and the electric currents through the discharges. The electrodynamic structure of the gas-plasma flow near the electrodes and the effect of the glow discharge on the pressure and temperature distributions along the surface of the plate are also studied.
期刊介绍:
Fluid Dynamics is an international peer reviewed journal that publishes theoretical, computational, and experimental research on aeromechanics, hydrodynamics, plasma dynamics, underground hydrodynamics, and biomechanics of continuous media. Special attention is given to new trends developing at the leading edge of science, such as theory and application of multi-phase flows, chemically reactive flows, liquid and gas flows in electromagnetic fields, new hydrodynamical methods of increasing oil output, new approaches to the description of turbulent flows, etc.