Existence of Homogeneous Euler Flows of Degree \(-\alpha \notin [-2,0]\)

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Ken Abe
{"title":"Existence of Homogeneous Euler Flows of Degree \\(-\\alpha \\notin [-2,0]\\)","authors":"Ken Abe","doi":"10.1007/s00205-024-01974-0","DOIUrl":null,"url":null,"abstract":"<div><p>We consider (<span>\\(-\\alpha \\)</span>)-homogeneous solutions to the stationary incompressible Euler equations in <span>\\({\\mathbb {R}}^{3}\\backslash \\{0\\}\\)</span> for <span>\\(\\alpha \\geqq 0\\)</span> and in <span>\\({\\mathbb {R}}^{3}\\)</span> for <span>\\(\\alpha &lt;0\\)</span>. Shvydkoy (2018) demonstrated the <i>nonexistence</i> of (<span>\\(-1\\)</span>)-homogeneous solutions <span>\\((u,p)\\in C^{1}({\\mathbb {R}}^{3}\\backslash \\{0\\})\\)</span> and (<span>\\(-\\alpha \\)</span>)-homogeneous solutions in the range <span>\\(0\\leqq \\alpha \\leqq 2\\)</span> for the Beltrami and axisymmetric flow; namely, that no (<span>\\(-\\alpha \\)</span>)-homogeneous solutions <span>\\((u,p)\\in C^{1}({\\mathbb {R}}^{3}\\backslash \\{0\\})\\)</span> for <span>\\(1\\leqq \\alpha \\leqq 2\\)</span> and <span>\\((u,p)\\in C^{2}({\\mathbb {R}}^{3}\\backslash \\{0\\})\\)</span> for <span>\\(0\\leqq \\alpha &lt; 1\\)</span> exist among these particular classes of flows other than irrotational solutions for integers <span>\\(\\alpha \\)</span>. The nonexistence result of the Beltrami (<span>\\(-\\alpha \\)</span>)-homogeneous solutions <span>\\((u,p)\\in C^{2}({\\mathbb {R}}^{3}\\backslash \\{0\\})\\)</span> holds for all <span>\\(\\alpha &lt;1\\)</span>. We show the nonexistence of axisymmetric (<span>\\(-\\alpha \\)</span>)-homogeneous solutions without swirls <span>\\((u,p)\\in C^{2}({\\mathbb {R}}^{3}\\backslash \\{0\\})\\)</span> for <span>\\(-2\\leqq \\alpha &lt;0\\)</span>. The main result of this study is the <i>existence</i> of axisymmetric (<span>\\(-\\alpha \\)</span>)-homogeneous solutions in the complementary range <span>\\(\\alpha \\in {\\mathbb {R}}\\backslash [0,2]\\)</span>. More specifically, we show the existence of axisymmetric Beltrami (<span>\\(-\\alpha \\)</span>)-homogeneous solutions <span>\\((u,p)\\in C^{1}({\\mathbb {R}}^{3}\\backslash \\{0\\})\\)</span> for <span>\\(\\alpha &gt;2\\)</span> and <span>\\((u,p)\\in C({\\mathbb {R}}^{3})\\)</span> for <span>\\(\\alpha &lt;0\\)</span> and axisymmetric (<span>\\(-\\alpha \\)</span>)-homogeneous solutions with a nonconstant Bernoulli function <span>\\((u,p)\\in C^{1}({\\mathbb {R}}^{3}\\backslash \\{0\\})\\)</span> for <span>\\(\\alpha &gt;2\\)</span> and <span>\\((u,p)\\in C({\\mathbb {R}}^{3})\\)</span> for <span>\\(\\alpha &lt;-2\\)</span>, including axisymmetric (<span>\\(-\\alpha \\)</span>)-homogeneous solutions without swirls <span>\\((u,p)\\in C^{2}({\\mathbb {R}}^{3}\\backslash \\{0\\})\\)</span> for <span>\\(\\alpha &gt;2\\)</span> and <span>\\((u,p)\\in C^{1}({\\mathbb {R}}^{3}\\backslash \\{0\\})\\cap C({\\mathbb {R}}^{3})\\)</span> for <span>\\(\\alpha &lt;-2\\)</span>. This is the first existence result on (<span>\\(-\\alpha \\)</span>)-homogeneous solutions with no explicit forms. The level sets of the axisymmetric stream function of the irrotational (<span>\\(-\\alpha \\)</span>)-homogeneous solutions in the cross-section are the Jordan curves for <span>\\(\\alpha =3\\)</span>. For <span>\\(2&lt;\\alpha &lt;3\\)</span>, we show the existence of axisymmetric (<span>\\(-\\alpha \\)</span>)-homogeneous solutions whose stream function level sets are the Jordan curves. They provide new examples of the Beltrami/Euler flows in <span>\\({\\mathbb {R}}^{3}\\backslash \\{0\\}\\)</span> whose level sets of the proportionality factor/Bernoulli surfaces are nested surfaces created by the rotation of the sign <span>\\(``\\infty ''\\)</span>.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-01974-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider (\(-\alpha \))-homogeneous solutions to the stationary incompressible Euler equations in \({\mathbb {R}}^{3}\backslash \{0\}\) for \(\alpha \geqq 0\) and in \({\mathbb {R}}^{3}\) for \(\alpha <0\). Shvydkoy (2018) demonstrated the nonexistence of (\(-1\))-homogeneous solutions \((u,p)\in C^{1}({\mathbb {R}}^{3}\backslash \{0\})\) and (\(-\alpha \))-homogeneous solutions in the range \(0\leqq \alpha \leqq 2\) for the Beltrami and axisymmetric flow; namely, that no (\(-\alpha \))-homogeneous solutions \((u,p)\in C^{1}({\mathbb {R}}^{3}\backslash \{0\})\) for \(1\leqq \alpha \leqq 2\) and \((u,p)\in C^{2}({\mathbb {R}}^{3}\backslash \{0\})\) for \(0\leqq \alpha < 1\) exist among these particular classes of flows other than irrotational solutions for integers \(\alpha \). The nonexistence result of the Beltrami (\(-\alpha \))-homogeneous solutions \((u,p)\in C^{2}({\mathbb {R}}^{3}\backslash \{0\})\) holds for all \(\alpha <1\). We show the nonexistence of axisymmetric (\(-\alpha \))-homogeneous solutions without swirls \((u,p)\in C^{2}({\mathbb {R}}^{3}\backslash \{0\})\) for \(-2\leqq \alpha <0\). The main result of this study is the existence of axisymmetric (\(-\alpha \))-homogeneous solutions in the complementary range \(\alpha \in {\mathbb {R}}\backslash [0,2]\). More specifically, we show the existence of axisymmetric Beltrami (\(-\alpha \))-homogeneous solutions \((u,p)\in C^{1}({\mathbb {R}}^{3}\backslash \{0\})\) for \(\alpha >2\) and \((u,p)\in C({\mathbb {R}}^{3})\) for \(\alpha <0\) and axisymmetric (\(-\alpha \))-homogeneous solutions with a nonconstant Bernoulli function \((u,p)\in C^{1}({\mathbb {R}}^{3}\backslash \{0\})\) for \(\alpha >2\) and \((u,p)\in C({\mathbb {R}}^{3})\) for \(\alpha <-2\), including axisymmetric (\(-\alpha \))-homogeneous solutions without swirls \((u,p)\in C^{2}({\mathbb {R}}^{3}\backslash \{0\})\) for \(\alpha >2\) and \((u,p)\in C^{1}({\mathbb {R}}^{3}\backslash \{0\})\cap C({\mathbb {R}}^{3})\) for \(\alpha <-2\). This is the first existence result on (\(-\alpha \))-homogeneous solutions with no explicit forms. The level sets of the axisymmetric stream function of the irrotational (\(-\alpha \))-homogeneous solutions in the cross-section are the Jordan curves for \(\alpha =3\). For \(2<\alpha <3\), we show the existence of axisymmetric (\(-\alpha \))-homogeneous solutions whose stream function level sets are the Jordan curves. They provide new examples of the Beltrami/Euler flows in \({\mathbb {R}}^{3}\backslash \{0\}\) whose level sets of the proportionality factor/Bernoulli surfaces are nested surfaces created by the rotation of the sign \(``\infty ''\).

度$$-\alpha \notin [-2,0]$$ 的均质欧拉流的存在性
对于\(\alpha \geqq 0\) ,我们考虑在\({\mathbb {R}}^{3}\backslash \{0\}\) 中的(\(-\alpha \))-均质解;对于\(\alpha <0\),我们考虑在\({\mathbb {R}}^{3}\) 中的(\(-\alpha \))-均质解。Shvydkoy(2018)证明了对于贝尔特拉米流和轴对称流,在C^{1}({\mathbb {R}}^{3}\backslash \{0\})\((u,p)\)和(\(-\alpha \))\(0\leqq \alpha \leqq 2\) 范围内不存在(\(-1\))-均质解;即,在 C^{1}({\mathbb {R}}^{3}\backslash \{0\})中没有针对 \(1\leqq \alpha \leqq 2\) 和 \((u.,p))的 (\(-\alpha \))-均质解、p)in C^{2}({\mathbb {R}}^{3}\backslash \{0\})\) for\(0\leqq \alpha <;1) 存在于这些特殊类别的流中,而不是整数 \(\alpha \)的非旋转解。贝尔特拉米((-\alpha \))-同调解 \((u,p)\in C^{2}({\mathbb {R}}^{3}\backslash \{0\})\的不存在结果对于所有的 \(\alpha <1\) 都成立。)我们证明了对于\(-2\leqq \alpha <0\), C^{2}({mathbb {R}}^{3}\backslash \{0/})中不存在无漩涡的轴对称(\(-\alpha \))-均质解((u,p)/in C^{2}({mathbb {R}}^{3}\backslash \{0/}))。本研究的主要结果是在互补范围内存在轴对称(-\alpha)同调解(\(\alpha \in {\mathbb {R}}\backslash [0,2])。更具体地说,我们证明了在 C^{1}({\mathbb {R}}^{3}\backslash \{0\}) 中存在轴对称的贝尔特拉米((-\alpha))-均质解(((u,p)\in C^{1}({\mathbb {R}}^{3}\backslash \{0\}) for \(\alpha >;2) and\((u,p)\in C({\mathbb {R}}^{3})\) for\(\alpha <;0)和轴对称((-\alpha \))均质解,对于(\alpha >;2\) and \((u,p)\in C({\mathbb {R}}^{3})\) for \(\alpha <-2\), including axisymmetric (\(-\alpha \))-homogeneous solutions without swirls \((u,p)\in C^{2}({\mathbb {R}}^{3}\backslash \{0\})\) for \(\alpha >;2\) and\((u,p)\in C^{1}({\mathbb {R}^{3}\backslash\{0\})\cap C({\mathbb {R}}^{3})\) for\(\alpha <-2\).这是第一个没有显式的(\(-\alpha \))均质解的存在性结果。横截面上的非旋转(\(-\alpha \))-均相解的轴对称流函数的水平集是\(\alpha =3\)的乔丹曲线。对于(2<\alpha <3\),我们证明了轴对称(\(-\alpha \))-均质解的存在,其流函数水平集是乔丹曲线。它们提供了在 \({\mathbb {R}}^{3}\backslash \{0\}\)中的贝尔特拉米/欧勒流的新例子,其比例因子/伯努利曲面的水平集是通过旋转符号 \(``\infty ''\) 创建的嵌套曲面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信