Existence of Homogeneous Euler Flows of Degree \(-\alpha \notin [-2,0]\)

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
Ken Abe
{"title":"Existence of Homogeneous Euler Flows of Degree \\(-\\alpha \\notin [-2,0]\\)","authors":"Ken Abe","doi":"10.1007/s00205-024-01974-0","DOIUrl":null,"url":null,"abstract":"<div><p>We consider (<span>\\(-\\alpha \\)</span>)-homogeneous solutions to the stationary incompressible Euler equations in <span>\\({\\mathbb {R}}^{3}\\backslash \\{0\\}\\)</span> for <span>\\(\\alpha \\geqq 0\\)</span> and in <span>\\({\\mathbb {R}}^{3}\\)</span> for <span>\\(\\alpha &lt;0\\)</span>. Shvydkoy (2018) demonstrated the <i>nonexistence</i> of (<span>\\(-1\\)</span>)-homogeneous solutions <span>\\((u,p)\\in C^{1}({\\mathbb {R}}^{3}\\backslash \\{0\\})\\)</span> and (<span>\\(-\\alpha \\)</span>)-homogeneous solutions in the range <span>\\(0\\leqq \\alpha \\leqq 2\\)</span> for the Beltrami and axisymmetric flow; namely, that no (<span>\\(-\\alpha \\)</span>)-homogeneous solutions <span>\\((u,p)\\in C^{1}({\\mathbb {R}}^{3}\\backslash \\{0\\})\\)</span> for <span>\\(1\\leqq \\alpha \\leqq 2\\)</span> and <span>\\((u,p)\\in C^{2}({\\mathbb {R}}^{3}\\backslash \\{0\\})\\)</span> for <span>\\(0\\leqq \\alpha &lt; 1\\)</span> exist among these particular classes of flows other than irrotational solutions for integers <span>\\(\\alpha \\)</span>. The nonexistence result of the Beltrami (<span>\\(-\\alpha \\)</span>)-homogeneous solutions <span>\\((u,p)\\in C^{2}({\\mathbb {R}}^{3}\\backslash \\{0\\})\\)</span> holds for all <span>\\(\\alpha &lt;1\\)</span>. We show the nonexistence of axisymmetric (<span>\\(-\\alpha \\)</span>)-homogeneous solutions without swirls <span>\\((u,p)\\in C^{2}({\\mathbb {R}}^{3}\\backslash \\{0\\})\\)</span> for <span>\\(-2\\leqq \\alpha &lt;0\\)</span>. The main result of this study is the <i>existence</i> of axisymmetric (<span>\\(-\\alpha \\)</span>)-homogeneous solutions in the complementary range <span>\\(\\alpha \\in {\\mathbb {R}}\\backslash [0,2]\\)</span>. More specifically, we show the existence of axisymmetric Beltrami (<span>\\(-\\alpha \\)</span>)-homogeneous solutions <span>\\((u,p)\\in C^{1}({\\mathbb {R}}^{3}\\backslash \\{0\\})\\)</span> for <span>\\(\\alpha &gt;2\\)</span> and <span>\\((u,p)\\in C({\\mathbb {R}}^{3})\\)</span> for <span>\\(\\alpha &lt;0\\)</span> and axisymmetric (<span>\\(-\\alpha \\)</span>)-homogeneous solutions with a nonconstant Bernoulli function <span>\\((u,p)\\in C^{1}({\\mathbb {R}}^{3}\\backslash \\{0\\})\\)</span> for <span>\\(\\alpha &gt;2\\)</span> and <span>\\((u,p)\\in C({\\mathbb {R}}^{3})\\)</span> for <span>\\(\\alpha &lt;-2\\)</span>, including axisymmetric (<span>\\(-\\alpha \\)</span>)-homogeneous solutions without swirls <span>\\((u,p)\\in C^{2}({\\mathbb {R}}^{3}\\backslash \\{0\\})\\)</span> for <span>\\(\\alpha &gt;2\\)</span> and <span>\\((u,p)\\in C^{1}({\\mathbb {R}}^{3}\\backslash \\{0\\})\\cap C({\\mathbb {R}}^{3})\\)</span> for <span>\\(\\alpha &lt;-2\\)</span>. This is the first existence result on (<span>\\(-\\alpha \\)</span>)-homogeneous solutions with no explicit forms. The level sets of the axisymmetric stream function of the irrotational (<span>\\(-\\alpha \\)</span>)-homogeneous solutions in the cross-section are the Jordan curves for <span>\\(\\alpha =3\\)</span>. For <span>\\(2&lt;\\alpha &lt;3\\)</span>, we show the existence of axisymmetric (<span>\\(-\\alpha \\)</span>)-homogeneous solutions whose stream function level sets are the Jordan curves. They provide new examples of the Beltrami/Euler flows in <span>\\({\\mathbb {R}}^{3}\\backslash \\{0\\}\\)</span> whose level sets of the proportionality factor/Bernoulli surfaces are nested surfaces created by the rotation of the sign <span>\\(``\\infty ''\\)</span>.</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":"248 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-01974-0","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We consider (\(-\alpha \))-homogeneous solutions to the stationary incompressible Euler equations in \({\mathbb {R}}^{3}\backslash \{0\}\) for \(\alpha \geqq 0\) and in \({\mathbb {R}}^{3}\) for \(\alpha <0\). Shvydkoy (2018) demonstrated the nonexistence of (\(-1\))-homogeneous solutions \((u,p)\in C^{1}({\mathbb {R}}^{3}\backslash \{0\})\) and (\(-\alpha \))-homogeneous solutions in the range \(0\leqq \alpha \leqq 2\) for the Beltrami and axisymmetric flow; namely, that no (\(-\alpha \))-homogeneous solutions \((u,p)\in C^{1}({\mathbb {R}}^{3}\backslash \{0\})\) for \(1\leqq \alpha \leqq 2\) and \((u,p)\in C^{2}({\mathbb {R}}^{3}\backslash \{0\})\) for \(0\leqq \alpha < 1\) exist among these particular classes of flows other than irrotational solutions for integers \(\alpha \). The nonexistence result of the Beltrami (\(-\alpha \))-homogeneous solutions \((u,p)\in C^{2}({\mathbb {R}}^{3}\backslash \{0\})\) holds for all \(\alpha <1\). We show the nonexistence of axisymmetric (\(-\alpha \))-homogeneous solutions without swirls \((u,p)\in C^{2}({\mathbb {R}}^{3}\backslash \{0\})\) for \(-2\leqq \alpha <0\). The main result of this study is the existence of axisymmetric (\(-\alpha \))-homogeneous solutions in the complementary range \(\alpha \in {\mathbb {R}}\backslash [0,2]\). More specifically, we show the existence of axisymmetric Beltrami (\(-\alpha \))-homogeneous solutions \((u,p)\in C^{1}({\mathbb {R}}^{3}\backslash \{0\})\) for \(\alpha >2\) and \((u,p)\in C({\mathbb {R}}^{3})\) for \(\alpha <0\) and axisymmetric (\(-\alpha \))-homogeneous solutions with a nonconstant Bernoulli function \((u,p)\in C^{1}({\mathbb {R}}^{3}\backslash \{0\})\) for \(\alpha >2\) and \((u,p)\in C({\mathbb {R}}^{3})\) for \(\alpha <-2\), including axisymmetric (\(-\alpha \))-homogeneous solutions without swirls \((u,p)\in C^{2}({\mathbb {R}}^{3}\backslash \{0\})\) for \(\alpha >2\) and \((u,p)\in C^{1}({\mathbb {R}}^{3}\backslash \{0\})\cap C({\mathbb {R}}^{3})\) for \(\alpha <-2\). This is the first existence result on (\(-\alpha \))-homogeneous solutions with no explicit forms. The level sets of the axisymmetric stream function of the irrotational (\(-\alpha \))-homogeneous solutions in the cross-section are the Jordan curves for \(\alpha =3\). For \(2<\alpha <3\), we show the existence of axisymmetric (\(-\alpha \))-homogeneous solutions whose stream function level sets are the Jordan curves. They provide new examples of the Beltrami/Euler flows in \({\mathbb {R}}^{3}\backslash \{0\}\) whose level sets of the proportionality factor/Bernoulli surfaces are nested surfaces created by the rotation of the sign \(``\infty ''\).

度$$-\alpha \notin [-2,0]$$ 的均质欧拉流的存在性
对于\(\alpha \geqq 0\) ,我们考虑在\({\mathbb {R}}^{3}\backslash \{0\}\) 中的(\(-\alpha \))-均质解;对于\(\alpha <0\),我们考虑在\({\mathbb {R}}^{3}\) 中的(\(-\alpha \))-均质解。Shvydkoy(2018)证明了对于贝尔特拉米流和轴对称流,在C^{1}({\mathbb {R}}^{3}\backslash \{0\})\((u,p)\)和(\(-\alpha \))\(0\leqq \alpha \leqq 2\) 范围内不存在(\(-1\))-均质解;即,在 C^{1}({\mathbb {R}}^{3}\backslash \{0\})中没有针对 \(1\leqq \alpha \leqq 2\) 和 \((u.,p))的 (\(-\alpha \))-均质解、p)in C^{2}({\mathbb {R}}^{3}\backslash \{0\})\) for\(0\leqq \alpha <;1) 存在于这些特殊类别的流中,而不是整数 \(\alpha \)的非旋转解。贝尔特拉米((-\alpha \))-同调解 \((u,p)\in C^{2}({\mathbb {R}}^{3}\backslash \{0\})\的不存在结果对于所有的 \(\alpha <1\) 都成立。)我们证明了对于\(-2\leqq \alpha <0\), C^{2}({mathbb {R}}^{3}\backslash \{0/})中不存在无漩涡的轴对称(\(-\alpha \))-均质解((u,p)/in C^{2}({mathbb {R}}^{3}\backslash \{0/}))。本研究的主要结果是在互补范围内存在轴对称(-\alpha)同调解(\(\alpha \in {\mathbb {R}}\backslash [0,2])。更具体地说,我们证明了在 C^{1}({\mathbb {R}}^{3}\backslash \{0\}) 中存在轴对称的贝尔特拉米((-\alpha))-均质解(((u,p)\in C^{1}({\mathbb {R}}^{3}\backslash \{0\}) for \(\alpha >;2) and\((u,p)\in C({\mathbb {R}}^{3})\) for\(\alpha <;0)和轴对称((-\alpha \))均质解,对于(\alpha >;2\) and \((u,p)\in C({\mathbb {R}}^{3})\) for \(\alpha <-2\), including axisymmetric (\(-\alpha \))-homogeneous solutions without swirls \((u,p)\in C^{2}({\mathbb {R}}^{3}\backslash \{0\})\) for \(\alpha >;2\) and\((u,p)\in C^{1}({\mathbb {R}^{3}\backslash\{0\})\cap C({\mathbb {R}}^{3})\) for\(\alpha <-2\).这是第一个没有显式的(\(-\alpha \))均质解的存在性结果。横截面上的非旋转(\(-\alpha \))-均相解的轴对称流函数的水平集是\(\alpha =3\)的乔丹曲线。对于(2<\alpha <3\),我们证明了轴对称(\(-\alpha \))-均质解的存在,其流函数水平集是乔丹曲线。它们提供了在 \({\mathbb {R}}^{3}\backslash \{0\}\)中的贝尔特拉米/欧勒流的新例子,其比例因子/伯努利曲面的水平集是通过旋转符号 \(``\infty ''\) 创建的嵌套曲面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
8.00%
发文量
98
审稿时长
4-8 weeks
期刊介绍: The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信