Higher Order Boundary Harnack Principle via Degenerate Equations

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Susanna Terracini, Giorgio Tortone, Stefano Vita
{"title":"Higher Order Boundary Harnack Principle via Degenerate Equations","authors":"Susanna Terracini,&nbsp;Giorgio Tortone,&nbsp;Stefano Vita","doi":"10.1007/s00205-024-01973-1","DOIUrl":null,"url":null,"abstract":"<div><p>As a first result we prove higher order Schauder estimates for solutions to singular/degenerate elliptic equations of type </p><div><div><span>$$\\begin{aligned} -\\textrm{div}\\left( \\rho ^aA\\nabla w\\right) =\\rho ^af+\\textrm{div}\\left( \\rho ^aF\\right) \\quad \\text {in}\\; \\Omega \\end{aligned}$$</span></div></div><p>for exponents <span>\\(a&gt;-1\\)</span>, where the weight <span>\\(\\rho \\)</span> vanishes with non zero gradient on a regular hypersurface <span>\\(\\Gamma \\)</span>, which can be either a part of the boundary of <span>\\(\\Omega \\)</span> or mostly contained in its interior. As an application, we extend such estimates to the ratio <i>v</i>/<i>u</i> of two solutions to a second order elliptic equation in divergence form when the zero set of <i>v</i> includes the zero set of <i>u</i> which is not singular in the domain (in this case <span>\\(\\rho =u\\)</span>, <span>\\(a=2\\)</span> and <span>\\(w=v/u\\)</span>). We prove first the <span>\\(C^{k,\\alpha }\\)</span>-regularity of the ratio from one side of the regular part of the nodal set of <i>u</i> in the spirit of the higher order boundary Harnack principle in Savin (Discrete Contin Dyn Syst 35–12:6155–6163, 2015). Then, by a gluing Lemma, the estimates extend across the regular part of the nodal set. Finally, using conformal mapping in dimension <span>\\(n=2\\)</span>, we provide local gradient estimates for the ratio, which hold also across the singular set.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-01973-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

As a first result we prove higher order Schauder estimates for solutions to singular/degenerate elliptic equations of type

$$\begin{aligned} -\textrm{div}\left( \rho ^aA\nabla w\right) =\rho ^af+\textrm{div}\left( \rho ^aF\right) \quad \text {in}\; \Omega \end{aligned}$$

for exponents \(a>-1\), where the weight \(\rho \) vanishes with non zero gradient on a regular hypersurface \(\Gamma \), which can be either a part of the boundary of \(\Omega \) or mostly contained in its interior. As an application, we extend such estimates to the ratio v/u of two solutions to a second order elliptic equation in divergence form when the zero set of v includes the zero set of u which is not singular in the domain (in this case \(\rho =u\), \(a=2\) and \(w=v/u\)). We prove first the \(C^{k,\alpha }\)-regularity of the ratio from one side of the regular part of the nodal set of u in the spirit of the higher order boundary Harnack principle in Savin (Discrete Contin Dyn Syst 35–12:6155–6163, 2015). Then, by a gluing Lemma, the estimates extend across the regular part of the nodal set. Finally, using conformal mapping in dimension \(n=2\), we provide local gradient estimates for the ratio, which hold also across the singular set.

Abstract Image

通过退化方程的高阶边界哈纳克原理
作为第一个结果,我们证明了奇异/退化椭圆方程的解的高阶 Schauder 估计值,其类型为 $$\begin{aligned} -\textrm{div}\left(\rho ^aA\nabla w\right) =\rho ^af+\textrm{div}\left(\rho ^aF\right) \quad \text {in};\对于指数 \(a>-1\),权重 \(\rho\)在规则超曲面 \(\Gamma\)上以非零梯度消失,这个超曲面可以是 \(\Omega\)边界的一部分,也可以大部分包含在它的内部。作为应用,我们把这种估计扩展到发散形式的二阶椭圆方程的两个解的v/u之比,当v的零集包括u的零集,而u在域中不是奇异的时候(在这种情况下,\(\rho =u\),\(a=2\)和\(w=v/u\))。我们首先根据萨文(Discrete Contin Dyn Syst 35-12:6155-6163, 2015)中高阶边界哈纳克原理的精神,证明了来自u的结点集正则部分一边的比率的(C^{k,\alpha }\ )正则性。然后,根据胶合定理,估计值扩展到节点集的正则部分。最后,利用维度(n=2)的保形映射,我们提供了比率的局部梯度估计,该估计在奇点集中也成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信