Optimal Lower Bound for the Blow-Up Rate of the Magnetic Zakharov System Without the Skin Effect

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Zaihui Gan, Yuchen Wang, Yue Wang, Jialing Yu
{"title":"Optimal Lower Bound for the Blow-Up Rate of the Magnetic Zakharov System Without the Skin Effect","authors":"Zaihui Gan,&nbsp;Yuchen Wang,&nbsp;Yue Wang,&nbsp;Jialing Yu","doi":"10.1007/s00205-024-01967-z","DOIUrl":null,"url":null,"abstract":"<div><p>We focus on the following Cauchy problem of the magnetic Zakharov system in two-dimensional space: </p><div><div><span>$$\\begin{aligned} \\left\\{ \\begin{array}{ll} &amp;{} i E_{1t}+\\Delta E_1-n E_1+\\eta E_2\\left( E_1\\overline{E_2}-\\overline{E_1}E_2\\right) =0, \\\\ &amp;{} i E_{2t}+\\Delta E_2-n E_2+\\eta E_1\\left( \\overline{E_1}E_2-E_1\\overline{E_2}\\right) =0, \\\\ &amp;{} n_t+\\nabla \\cdot {\\textbf {v}}=0, \\\\ &amp;{} {\\textbf {v}}_t+\\nabla n+\\nabla \\left( |E_1|^2+|E_2|^2\\right) =0, \\end{array} \\right. \\end{aligned}$$</span></div><div>\n (G-Z)\n </div></div><div><div><span>$$\\begin{aligned}&amp;(E_1,E_2,n,{\\textbf {v}})(0,x)=(E_{10},E_{20},n_{0},{\\textbf {v}}_{0})(x). \\end{aligned}$$</span></div><div>\n (G-Z-I)\n </div></div><p>System (G–Z) describes the spontaneous generation of a magnetic field without the skin effect in a cold plasma, and <span>\\(\\eta &gt;0\\)</span> is the magnetic coefficient. The nonlinear cubic coupling terms <span>\\(E_2\\left( E_1\\overline{E_2}-\\overline{E_1}E_2\\right) \\)</span> and <span>\\(E_1\\left( \\overline{E_1} E_2-E_1\\overline{E_2}\\right) \\)</span> generated by the cold magnetic field bring  additional difficulties compared with the classical Zakharov system. For when the initial mass meets a presettable condition </p><div><div><span>$$\\begin{aligned} \\frac{||Q||_{L^2(\\mathbb {R}^2)}^2}{1+\\eta }&lt;||E_{10}||_{L^2(\\mathbb {R}^2)}^2+||E_{20}||_{L^2(\\mathbb {R}^2)}^2 &lt;\\frac{||Q||_{L^2(\\mathbb {R}^2)}^2}{\\eta }, \\end{aligned}$$</span></div></div><p>where <i>Q</i> is the unique radially positive solution of the equation<span>\\(-\\Delta V+V=V^3 \\)</span>, we prove that there is a constant <span>\\(c&gt;0\\)</span>  depending only on the initial data such that for <i>t</i> near <i>T</i> (the blow-up time), </p><div><div><span>$$\\begin{aligned} \\left\\| \\left( E_1,E_2,n,{\\textbf {v}}\\right) \\right\\| _{H^1(\\mathbb {R}^2)\\times H^1(\\mathbb {R}^2)\\times L^2(\\mathbb {R}^2)\\times L^2(\\mathbb {R}^2)}\\geqslant \\frac{c}{ T-t }. \\end{aligned}$$</span></div></div><p>As the magnetic coefficient <span>\\(\\eta \\)</span> tends to 0, the blow-up rate recovers the result for the classical 2-D Zakharov system due to Merle (Commun Pure Appl Math 49(8):765–794, 1996). On the other hand, for any positive <span>\\(\\eta \\)</span>, the result of this paper reveals a rigorous justification that the optimal lower bound of the blow-up rates is not affected by the presence of a magnetic field without the skin effect in a cold plasma.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-01967-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We focus on the following Cauchy problem of the magnetic Zakharov system in two-dimensional space:

$$\begin{aligned} \left\{ \begin{array}{ll} &{} i E_{1t}+\Delta E_1-n E_1+\eta E_2\left( E_1\overline{E_2}-\overline{E_1}E_2\right) =0, \\ &{} i E_{2t}+\Delta E_2-n E_2+\eta E_1\left( \overline{E_1}E_2-E_1\overline{E_2}\right) =0, \\ &{} n_t+\nabla \cdot {\textbf {v}}=0, \\ &{} {\textbf {v}}_t+\nabla n+\nabla \left( |E_1|^2+|E_2|^2\right) =0, \end{array} \right. \end{aligned}$$
(G-Z)
$$\begin{aligned}&(E_1,E_2,n,{\textbf {v}})(0,x)=(E_{10},E_{20},n_{0},{\textbf {v}}_{0})(x). \end{aligned}$$
(G-Z-I)

System (G–Z) describes the spontaneous generation of a magnetic field without the skin effect in a cold plasma, and \(\eta >0\) is the magnetic coefficient. The nonlinear cubic coupling terms \(E_2\left( E_1\overline{E_2}-\overline{E_1}E_2\right) \) and \(E_1\left( \overline{E_1} E_2-E_1\overline{E_2}\right) \) generated by the cold magnetic field bring  additional difficulties compared with the classical Zakharov system. For when the initial mass meets a presettable condition

$$\begin{aligned} \frac{||Q||_{L^2(\mathbb {R}^2)}^2}{1+\eta }<||E_{10}||_{L^2(\mathbb {R}^2)}^2+||E_{20}||_{L^2(\mathbb {R}^2)}^2 <\frac{||Q||_{L^2(\mathbb {R}^2)}^2}{\eta }, \end{aligned}$$

where Q is the unique radially positive solution of the equation\(-\Delta V+V=V^3 \), we prove that there is a constant \(c>0\)  depending only on the initial data such that for t near T (the blow-up time),

$$\begin{aligned} \left\| \left( E_1,E_2,n,{\textbf {v}}\right) \right\| _{H^1(\mathbb {R}^2)\times H^1(\mathbb {R}^2)\times L^2(\mathbb {R}^2)\times L^2(\mathbb {R}^2)}\geqslant \frac{c}{ T-t }. \end{aligned}$$

As the magnetic coefficient \(\eta \) tends to 0, the blow-up rate recovers the result for the classical 2-D Zakharov system due to Merle (Commun Pure Appl Math 49(8):765–794, 1996). On the other hand, for any positive \(\eta \), the result of this paper reveals a rigorous justification that the optimal lower bound of the blow-up rates is not affected by the presence of a magnetic field without the skin effect in a cold plasma.

无皮肤效应的磁性扎哈罗夫系统爆炸率的最佳下限
我们重点研究二维空间中磁扎哈罗夫系统的下列考奇问题: $$\begin{aligned}\E_1overline{E_2}-\overline{E_1}E_2\right) =0, (& {} i E_{1t}+\Delta E_1-n E_1+\eta E_2\left( E_1\overline{E_2}-\overline{E_1}E_2\right) =0, (&;{} i E_{2t}+\Delta E_2-n E_2+\eta E_1\left(\overline{E_1}E_2-E_1overline{E_2}\right) =0,\ &;{} n_t+\nabla \cdot {\textbf {v}}=0, ( &{} {\textbf {v}}_t+\nabla n+\nabla \left( |E_1|^2+|E_2|^2\right) =0, ( end{array}\right.\end{aligned}$$(G-Z)$$\begin{aligned}&(E_1,E_2,n,{\textbf {v}})(0,x)=(E_{10},E_{20},n_{0},{\textbf {v}}_{0})(x).\end{aligned}$$(G-Z-I)系统(G-Z)描述了冷等离子体中没有趋肤效应的磁场自发生成,(\ea >0\)是磁系数。与经典扎哈罗夫系统相比,冷磁场产生的非线性立方耦合项(E_2left( E_1\overline{E_2}-\overline{E_1}E_2\right) \)和(E_1left( \overline{E_1} E_2-E_1\overline{E_2}\right) \)带来了额外的困难。因为当初始质量满足一个可预设的条件时 $$\begin{aligned}\frac{||Q|||_{L^2(\mathbb {R}^2)}^2}{1+\eta }<|||E_{10}||_{L^2(\mathbb {R}^2)}^2+|||E_{20}|||_{L^2(\mathbb {R}^2)}^2 <;\其中 Q 是方程(-△ V+V=V^3 )的唯一径向正解,我们证明存在一个仅取决于初始数据的常数 \(c>0\) ,使得对于 T 附近的 t(炸毁时间),$$\begin{aligned}。\left\| \left( E_1,E_2,n,{\textbf {v}}\right) \right\| _{H^1(\mathbb {R}^2)\times H^1(\mathbb {R}^2)\times L^2(\mathbb {R}^2)\times L^2(\mathbb {R}^2)}\geqslant \frac{c}{ T-t }.\end{aligned}$$ 随着磁系数 \(\eta \)趋于 0,炸毁率恢复了梅尔(Merle)对经典二维扎哈罗夫系统的结果(Commun Pure Appl Math 49(8):765-794, 1996)。另一方面,对于任何正的(\eta \),本文的结果揭示了一个严格的理由,即炸毁率的最优下限不受冷等离子体中没有集肤效应的磁场存在的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信