Simon Bortz, Steve Hofmann, José Luis Luna Garcia, Svitlana Mayboroda, Bruno Poggi
{"title":"Critical Perturbations for Second Order Elliptic Operators—Part II: Non-tangential Maximal Function Estimates","authors":"Simon Bortz, Steve Hofmann, José Luis Luna Garcia, Svitlana Mayboroda, Bruno Poggi","doi":"10.1007/s00205-024-01977-x","DOIUrl":null,"url":null,"abstract":"<div><p>This is the final part of a series of papers where we study perturbations of divergence form second order elliptic operators <span>\\(-\\textrm{div}A \\nabla \\)</span> by first and zero order terms, whose complex coefficients lie in critical spaces, via the method of layer potentials. In particular, we show that the <span>\\(L^2\\)</span> well-posedness (with natural non-tangential maximal function estimates) of the Dirichlet, Neumann and regularity problems for complex Hermitian, block form, or constant-coefficient divergence form elliptic operators in the upper half-space are all stable under such perturbations. Due to the lack of the classical De Giorgi–Nash–Moser theory in our setting, our method to prove the non-tangential maximal function estimates relies on a completely new argument: We obtain a certain weak-<span>\\(L^p\\)</span> “<span>\\(N<S\\)</span>” estimate, which we eventually couple with square function bounds, weighted extrapolation theory, and a bootstrapping argument to recover the full <span>\\(L^2\\)</span> bound. Finally, we show the existence and uniqueness of solutions in a relatively broad class. As a corollary, we claim the first results in an unbounded domain concerning the <span>\\(L^p\\)</span>-solvability of boundary value problems for the magnetic Schrödinger operator <span>\\(-(\\nabla -i\\textbf{a})^2+V\\)</span> when the magnetic potential <span>\\(\\textbf{a}\\)</span> and the electric potential <i>V</i> are accordingly small in the norm of a scale-invariant Lebesgue space.\n</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-01977-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
This is the final part of a series of papers where we study perturbations of divergence form second order elliptic operators \(-\textrm{div}A \nabla \) by first and zero order terms, whose complex coefficients lie in critical spaces, via the method of layer potentials. In particular, we show that the \(L^2\) well-posedness (with natural non-tangential maximal function estimates) of the Dirichlet, Neumann and regularity problems for complex Hermitian, block form, or constant-coefficient divergence form elliptic operators in the upper half-space are all stable under such perturbations. Due to the lack of the classical De Giorgi–Nash–Moser theory in our setting, our method to prove the non-tangential maximal function estimates relies on a completely new argument: We obtain a certain weak-\(L^p\) “\(N<S\)” estimate, which we eventually couple with square function bounds, weighted extrapolation theory, and a bootstrapping argument to recover the full \(L^2\) bound. Finally, we show the existence and uniqueness of solutions in a relatively broad class. As a corollary, we claim the first results in an unbounded domain concerning the \(L^p\)-solvability of boundary value problems for the magnetic Schrödinger operator \(-(\nabla -i\textbf{a})^2+V\) when the magnetic potential \(\textbf{a}\) and the electric potential V are accordingly small in the norm of a scale-invariant Lebesgue space.