Bredon motivic cohomology of the real numbers

Bill Deng, Mircea Voineagu
{"title":"Bredon motivic cohomology of the real numbers","authors":"Bill Deng, Mircea Voineagu","doi":"arxiv-2404.06697","DOIUrl":null,"url":null,"abstract":"Over the real numbers with $\\Z/2-$coefficients, we compute the\n$C_2$-equivariant Borel motivic cohomology ring, the Bredon motivic cohomology\ngroups and prove that the Bredon motivic cohomology ring of the real numbers is\na proper subring in the $RO(C_2\\times C_2)$-graded Bredon cohomology ring of a\npoint. This generalizes Voevodsky's computation of the motivic cohomology ring of\nthe real numbers to the $C_2$-equivariant setting. These computations are\nextended afterwards to any real closed field.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.06697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Over the real numbers with $\Z/2-$coefficients, we compute the $C_2$-equivariant Borel motivic cohomology ring, the Bredon motivic cohomology groups and prove that the Bredon motivic cohomology ring of the real numbers is a proper subring in the $RO(C_2\times C_2)$-graded Bredon cohomology ring of a point. This generalizes Voevodsky's computation of the motivic cohomology ring of the real numbers to the $C_2$-equivariant setting. These computations are extended afterwards to any real closed field.
实数的布雷顿动机同调
在具有$\Z/2-$系数的实数上,我们计算了$C_2$-后变的玻雷尔动机同调环、玻雷顿动机同调群,并证明实数的玻雷顿动机同调环是apoint的$RO(C_2\times C_2)$-等级玻雷顿同调环的一个适当子环。这就把沃耶沃德斯基对实数的动机同调环的计算推广到了$C_2$-后变的环境中。这些计算随后扩展到任何实闭域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信