K-theories and Free Inductive Graded Rings in Abstract Quadratic Forms Theories

Kaique Matias de Andrade Roberto, Hugo Luiz mariano
{"title":"K-theories and Free Inductive Graded Rings in Abstract Quadratic Forms Theories","authors":"Kaique Matias de Andrade Roberto, Hugo Luiz mariano","doi":"arxiv-2404.05750","DOIUrl":null,"url":null,"abstract":"We build on previous work on multirings (\\cite{roberto2021quadratic}) that\nprovides generalizations of the available abstract quadratic forms theories\n(special groups and real semigroups) to the context of multirings\n(\\cite{marshall2006real}, \\cite{ribeiro2016functorial}). Here we raise one step\nin this generalization, introducing the concept of pre-special hyperfields and\nexpand a fundamental tool in quadratic forms theory to the more general\nmultivalued setting: the K-theory. We introduce and develop the K-theory of\nhyperbolic hyperfields that generalize simultaneously Milnor's K-theory\n(\\cite{milnor1970algebraick}) and Special Groups K-theory, developed by\nDickmann-Miraglia (\\cite{dickmann2006algebraic}). We develop some properties of\nthis generalized K-theory, that can be seen as a free inductive graded ring, a\nconcept introduced in \\cite{dickmann1998quadratic} in order to provide a\nsolution of Marshall's Signature Conjecture.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"111 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.05750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We build on previous work on multirings (\cite{roberto2021quadratic}) that provides generalizations of the available abstract quadratic forms theories (special groups and real semigroups) to the context of multirings (\cite{marshall2006real}, \cite{ribeiro2016functorial}). Here we raise one step in this generalization, introducing the concept of pre-special hyperfields and expand a fundamental tool in quadratic forms theory to the more general multivalued setting: the K-theory. We introduce and develop the K-theory of hyperbolic hyperfields that generalize simultaneously Milnor's K-theory (\cite{milnor1970algebraick}) and Special Groups K-theory, developed by Dickmann-Miraglia (\cite{dickmann2006algebraic}). We develop some properties of this generalized K-theory, that can be seen as a free inductive graded ring, a concept introduced in \cite{dickmann1998quadratic} in order to provide a solution of Marshall's Signature Conjecture.
抽象二次型理论中的 K 理论和自由归纳分级环
我们在先前关于多重irings的工作(\cite{roberto2021quadratic})基础上,将现有的抽象二次型理论(特殊群和实半群)推广到多重irings的语境中(\cite{marshall2006real}, \cite{ribeiro2016functorial})。在此,我们将这一泛化提升了一步,引入了前特殊超场的概念,并将二次型理论中的一个基本工具扩展到了更一般的多值环境中:K理论。我们引入并发展了双曲超场的K理论,它同时概括了米尔诺的K理论(\cite{milnor1970algebraick})和迪克曼-米拉利亚(Dickmann-Miraglia)发展的特殊群K理论(\cite{dickmann2006algebraic})。我们发展了这个广义 K 理论的一些性质,它可以被看作是一个自由归纳分级环,这个概念是在《迪克曼 1998 四元组》中引入的,目的是为马歇尔签名猜想提供一个解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信