{"title":"Multifunctorial Equivariant Algebraic K-Theory","authors":"Donald Yau","doi":"arxiv-2404.02794","DOIUrl":null,"url":null,"abstract":"A central question in equivariant algebraic K-theory asks whether there\nexists an equivariant K-theory machine from genuine symmetric monoidal\nG-categories to orthogonal G-spectra that preserves equivariant algebraic\nstructures. We answer this question positively by constructing an enriched\nmultifunctor K from the G-categorically enriched multicategory of\nO-pseudoalgebras to the symmetric monoidal category of orthogonal G-spectra,\nfor a compact Lie group G and a 1-connected pseudo-commutative G-categorical\noperad O. As the main application of its enriched multifunctoriality, K\npreserves all equivariant algebraic structures parametrized by multicategories\nenriched in either G-spaces or G-categories. For example, for a finite group G\nand the G-Barratt-Eccles operad, K transports equivariant E-infinity algebras,\nin the sense of Guillou-May or Blumberg-Hill, of genuine symmetric monoidal\nG-categories to equivariant E-infinity algebras of orthogonal G-spectra.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.02794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A central question in equivariant algebraic K-theory asks whether there
exists an equivariant K-theory machine from genuine symmetric monoidal
G-categories to orthogonal G-spectra that preserves equivariant algebraic
structures. We answer this question positively by constructing an enriched
multifunctor K from the G-categorically enriched multicategory of
O-pseudoalgebras to the symmetric monoidal category of orthogonal G-spectra,
for a compact Lie group G and a 1-connected pseudo-commutative G-categorical
operad O. As the main application of its enriched multifunctoriality, K
preserves all equivariant algebraic structures parametrized by multicategories
enriched in either G-spaces or G-categories. For example, for a finite group G
and the G-Barratt-Eccles operad, K transports equivariant E-infinity algebras,
in the sense of Guillou-May or Blumberg-Hill, of genuine symmetric monoidal
G-categories to equivariant E-infinity algebras of orthogonal G-spectra.
等变代数 K 理论的一个核心问题是,从真正的对称一元 G 范畴到正交 G 范畴,是否存在一个保留等变代数结构的等变 K 理论机。我们正面回答了这个问题,即针对一个紧凑的李群G和一个1连接的伪交换G范畴O,构造了一个从G范畴丰富的O伪基多范畴到正交G谱的对称一元范畴的丰富多矢量K。例如,对于有限群Gand的G-Barratt-Eccles操作数,K将真正对称单环G-类的等变E-无穷代数(Guillou-May或Blumberg-Hill意义上的等变E-无穷代数)转移到正交G-谱的等变E-无穷代数。