{"title":"Consistent, conservative, and efficient advection updatesfor iterative‐implicit atmospheric solvers","authors":"John Thuburn","doi":"10.1002/qj.4722","DOIUrl":null,"url":null,"abstract":"Atmospheric model dynamical cores that iterate towards a Crank–Nicolson‐like implicit time‐stepping scheme are attractive for operational prediction because their excellent stability properties permit the use of long time steps. However, the long‐time‐step advection schemes used in such models are relatively expensive, and that expense is compounded by the need to compute the advection terms multiple times in the iterative solver. Moreover, unless care is taken in the design of the solver, desirable properties of an advection scheme, such as conservation, consistency, and boundedness, might only be achieved in the unaffordable limit of solver convergence. Here, a modification to such iterative solvers is proposed, similar to the previously published SLIC scheme, in which full advection calculations are made only once per time step, with cheap advection updates made at each solver iteration. This modification significantly reduces the cost of such iterative solvers. It is shown here that the cheap advection updates and the solver back‐substitution calculations can be formulated in such a way that the advection remains conservative, consistent, and bounded no matter how many solver iterations are taken, and not only at solver convergence. The proposed approach is demonstrated in shallow‐water model simulations.","PeriodicalId":49646,"journal":{"name":"Quarterly Journal of the Royal Meteorological Society","volume":"107 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of the Royal Meteorological Society","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/qj.4722","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Atmospheric model dynamical cores that iterate towards a Crank–Nicolson‐like implicit time‐stepping scheme are attractive for operational prediction because their excellent stability properties permit the use of long time steps. However, the long‐time‐step advection schemes used in such models are relatively expensive, and that expense is compounded by the need to compute the advection terms multiple times in the iterative solver. Moreover, unless care is taken in the design of the solver, desirable properties of an advection scheme, such as conservation, consistency, and boundedness, might only be achieved in the unaffordable limit of solver convergence. Here, a modification to such iterative solvers is proposed, similar to the previously published SLIC scheme, in which full advection calculations are made only once per time step, with cheap advection updates made at each solver iteration. This modification significantly reduces the cost of such iterative solvers. It is shown here that the cheap advection updates and the solver back‐substitution calculations can be formulated in such a way that the advection remains conservative, consistent, and bounded no matter how many solver iterations are taken, and not only at solver convergence. The proposed approach is demonstrated in shallow‐water model simulations.
期刊介绍:
The Quarterly Journal of the Royal Meteorological Society is a journal published by the Royal Meteorological Society. It aims to communicate and document new research in the atmospheric sciences and related fields. The journal is considered one of the leading publications in meteorology worldwide. It accepts articles, comprehensive review articles, and comments on published papers. It is published eight times a year, with additional special issues.
The Quarterly Journal has a wide readership of scientists in the atmospheric and related fields. It is indexed and abstracted in various databases, including Advanced Polymers Abstracts, Agricultural Engineering Abstracts, CAB Abstracts, CABDirect, COMPENDEX, CSA Civil Engineering Abstracts, Earthquake Engineering Abstracts, Engineered Materials Abstracts, Science Citation Index, SCOPUS, Web of Science, and more.