Analytic and Reidemeister torsions of digraphs and path complexes

IF 0.5 4区 数学 Q3 MATHEMATICS
Alexander Grigor’yan, Yong Lin, Shing-Tung Yau
{"title":"Analytic and Reidemeister torsions of digraphs and path complexes","authors":"Alexander Grigor’yan, Yong Lin, Shing-Tung Yau","doi":"10.4310/pamq.2024.v20.n2.a3","DOIUrl":null,"url":null,"abstract":"We define the notions of Reidemeister torsion and analytic torsion for directed graphs by means of the path homology theory introduced by the authors in [ $\\href{https://arxiv.org/abs/1207.2834}{7}$, $\\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=3324763}{8}$, $\\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=3431683}{9}$, $\\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=3845076}{11}$]. We prove the identity of the two notions of torsions as well as obtain formulas for torsions of Cartesian products and joins of digraphs.","PeriodicalId":54526,"journal":{"name":"Pure and Applied Mathematics Quarterly","volume":"50 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pure and Applied Mathematics Quarterly","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2024.v20.n2.a3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We define the notions of Reidemeister torsion and analytic torsion for directed graphs by means of the path homology theory introduced by the authors in [ $\href{https://arxiv.org/abs/1207.2834}{7}$, $\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=3324763}{8}$, $\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=3431683}{9}$, $\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=3845076}{11}$]. We prove the identity of the two notions of torsions as well as obtain formulas for torsions of Cartesian products and joins of digraphs.
数图和路径复合体的解析和雷德梅斯特扭转
我们通过作者在[$\href{https://arxiv.org/abs/1207.2834}{7}$, $\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=3324763}{8}$, $\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=3431683}{9}$, $\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=3845076}{11}$] 中引入的路径同构理论,定义了有向图的雷德梅斯特扭转(Reidemeister torsion)和解析扭转(analytic torsion)的概念。我们证明了这两个扭转概念的同一性,并得到了笛卡尔积的扭转和数图连接的公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
30
审稿时长
>12 weeks
期刊介绍: Publishes high-quality, original papers on all fields of mathematics. To facilitate fruitful interchanges between mathematicians from different regions and specialties, and to effectively disseminate new breakthroughs in mathematics, the journal welcomes well-written submissions from all significant areas of mathematics. The editors are committed to promoting the highest quality of mathematical scholarship.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信