Stability of Minkowski spacetime in exterior regions

IF 0.5 4区 数学 Q3 MATHEMATICS
Dawei Shen
{"title":"Stability of Minkowski spacetime in exterior regions","authors":"Dawei Shen","doi":"10.4310/pamq.2024.v20.n2.a4","DOIUrl":null,"url":null,"abstract":"In 1993, the global stability of Minkowski spacetime has been proven in the celebrated work of Christodoulou and Klainerman $\\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=1316662}{[5]}$ in a maximal foliation. In 2003, Klainerman and Nicolò $\\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=1946854}{[14]}$ gave a second proof of the stability of Minkowski in the case of the exterior of an outgoing null cone. In this paper, we give a new proof of $\\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=1946854}{[14]}$. Compared to $\\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=1946854}{[14]}$, we reduce the number of derivatives needed in the proof, simplify the treatment of the last slice, and provide a unified treatment of the decay of initial data. Also, concerning the treatment of curvature estimates, we replace the vectorfield method used in $\\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=1946854}{[14]}$ by the $r^p$-weighted estimates of Dafermos and Rodnianski $\\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=2730803}{[7]}$.","PeriodicalId":54526,"journal":{"name":"Pure and Applied Mathematics Quarterly","volume":"39 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pure and Applied Mathematics Quarterly","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2024.v20.n2.a4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In 1993, the global stability of Minkowski spacetime has been proven in the celebrated work of Christodoulou and Klainerman $\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=1316662}{[5]}$ in a maximal foliation. In 2003, Klainerman and Nicolò $\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=1946854}{[14]}$ gave a second proof of the stability of Minkowski in the case of the exterior of an outgoing null cone. In this paper, we give a new proof of $\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=1946854}{[14]}$. Compared to $\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=1946854}{[14]}$, we reduce the number of derivatives needed in the proof, simplify the treatment of the last slice, and provide a unified treatment of the decay of initial data. Also, concerning the treatment of curvature estimates, we replace the vectorfield method used in $\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=1946854}{[14]}$ by the $r^p$-weighted estimates of Dafermos and Rodnianski $\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=2730803}{[7]}$.
外部区域闵科夫斯基时空的稳定性
1993 年,Christodoulou 和 Klainerman $\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=1316662}{[5]}$ 的著名工作证明了闵可夫斯基时空在最大折射中的全局稳定性。2003 年,Klainerman 和 Nicolò $\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=1946854}{[14]}$ 再次证明了闵可夫斯基在出空锥外部的稳定性。在本文中,我们给出了 $\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=1946854}{[14]}$ 的新证明。与 $\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=1946854}{[14]}$ 相比,我们减少了证明中所需导数的数量,简化了最后一片的处理,并对初始数据的衰减进行了统一处理。另外,关于曲率估计的处理,我们用达菲莫斯和罗德尼安斯基的 $r^p$ 加权估计 $\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=2730803}{[7]}$ 取代了 $\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=1946854}{[14]}$ 中使用的向量场方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
30
审稿时长
>12 weeks
期刊介绍: Publishes high-quality, original papers on all fields of mathematics. To facilitate fruitful interchanges between mathematicians from different regions and specialties, and to effectively disseminate new breakthroughs in mathematics, the journal welcomes well-written submissions from all significant areas of mathematics. The editors are committed to promoting the highest quality of mathematical scholarship.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信