Mirror symmetry for open $r$-spin invariants

IF 0.5 4区 数学 Q3 MATHEMATICS
Mark Gross, Tyler L. Kelly, Ran J. Tessler
{"title":"Mirror symmetry for open $r$-spin invariants","authors":"Mark Gross, Tyler L. Kelly, Ran J. Tessler","doi":"10.4310/pamq.2024.v20.n2.a9","DOIUrl":null,"url":null,"abstract":"We show that a generating function for open $r$-spin enumerative invariants produces a universal unfolding of the polynomial $x^r$. Further, the coordinates parametrizing this universal unfolding are flat coordinates on the Frobenius manifold associated to the Landau–Ginzburg model $(\\mathbb{C}, x^r)$ via Saito–Givental theory. This result provides evidence for the same phenomenon to occur in higher dimension, proven in the sequel $\\href{https://arxiv.org/abs/2203.02435}{[\\textrm{GKT}22]}$.","PeriodicalId":54526,"journal":{"name":"Pure and Applied Mathematics Quarterly","volume":"188 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pure and Applied Mathematics Quarterly","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2024.v20.n2.a9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We show that a generating function for open $r$-spin enumerative invariants produces a universal unfolding of the polynomial $x^r$. Further, the coordinates parametrizing this universal unfolding are flat coordinates on the Frobenius manifold associated to the Landau–Ginzburg model $(\mathbb{C}, x^r)$ via Saito–Givental theory. This result provides evidence for the same phenomenon to occur in higher dimension, proven in the sequel $\href{https://arxiv.org/abs/2203.02435}{[\textrm{GKT}22]}$.
开放式 $r$ 自旋不变式的镜像对称性
我们证明,开放式 $r$ 自旋枚举不变式的生成函数产生了多项式 $x^r$ 的普遍展开。此外,参数化这一普遍展开的坐标是通过 Saito-Givental 理论与兰道-金兹堡模型 $(\mathbb{C}, x^r)$ 相关联的弗罗贝尼斯流形上的平坐标。这一结果为在更高维度出现同样现象提供了证据,并在续集 $\href{https://arxiv.org/abs/2203.02435}{[\textrm{GKT}22]}$ 中得到证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
30
审稿时长
>12 weeks
期刊介绍: Publishes high-quality, original papers on all fields of mathematics. To facilitate fruitful interchanges between mathematicians from different regions and specialties, and to effectively disseminate new breakthroughs in mathematics, the journal welcomes well-written submissions from all significant areas of mathematics. The editors are committed to promoting the highest quality of mathematical scholarship.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信