{"title":"A bi-variant algebraic cobordism via correspondences","authors":"Shoji Yokura","doi":"10.4310/pamq.2024.v20.n2.a8","DOIUrl":null,"url":null,"abstract":"A bi-variant theory $\\mathbb{B}(X,Y)$ defined for a pair $(X,Y)$ is a theory satisfying properties similar to those of Fulton–Mac Pherson’s bivariant theory $\\mathbb{B}(X \\xrightarrow{f} Y)$ defined for a morphism $f : X \\rightarrow Y$. In this paper, using correspondences we construct a bi-variant algebraic cobordism $\\Omega^{\\ast,\\sharp} (X, Y )$ such that $\\Omega^{\\ast,\\sharp}(X, pt)$ is isomorphic to Lee–Pandharipande’s algebraic cobordism of vector bundles $\\Omega \\underline{}_{\\ast,\\sharp} (X)$. In particular, $\\Omega^\\ast (X, pt) = \\Omega^{\\ast,0} (X, pt)$ is isomorphic to Levine–Morel’s algebraic cobordism $\\Omega \\underline{}_{\\ast} (X)$. Namely, $\\Omega^{\\ast,\\sharp} (X,Y)$ is a <i>bi-variant version</i> of Lee–Pandharipande’s algebraic cobordism of bundles $\\Omega_{\\ast,\\sharp} (X)$.","PeriodicalId":54526,"journal":{"name":"Pure and Applied Mathematics Quarterly","volume":"47 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pure and Applied Mathematics Quarterly","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2024.v20.n2.a8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A bi-variant theory $\mathbb{B}(X,Y)$ defined for a pair $(X,Y)$ is a theory satisfying properties similar to those of Fulton–Mac Pherson’s bivariant theory $\mathbb{B}(X \xrightarrow{f} Y)$ defined for a morphism $f : X \rightarrow Y$. In this paper, using correspondences we construct a bi-variant algebraic cobordism $\Omega^{\ast,\sharp} (X, Y )$ such that $\Omega^{\ast,\sharp}(X, pt)$ is isomorphic to Lee–Pandharipande’s algebraic cobordism of vector bundles $\Omega \underline{}_{\ast,\sharp} (X)$. In particular, $\Omega^\ast (X, pt) = \Omega^{\ast,0} (X, pt)$ is isomorphic to Levine–Morel’s algebraic cobordism $\Omega \underline{}_{\ast} (X)$. Namely, $\Omega^{\ast,\sharp} (X,Y)$ is a bi-variant version of Lee–Pandharipande’s algebraic cobordism of bundles $\Omega_{\ast,\sharp} (X)$.
期刊介绍:
Publishes high-quality, original papers on all fields of mathematics. To facilitate fruitful interchanges between mathematicians from different regions and specialties, and to effectively disseminate new breakthroughs in mathematics, the journal welcomes well-written submissions from all significant areas of mathematics. The editors are committed to promoting the highest quality of mathematical scholarship.