Deformations of Fano manifolds with weighted solitons

IF 0.5 4区 数学 Q3 MATHEMATICS
Akito Futaki
{"title":"Deformations of Fano manifolds with weighted solitons","authors":"Akito Futaki","doi":"10.4310/pamq.2024.v20.n2.a6","DOIUrl":null,"url":null,"abstract":"We consider weighted solitons on Fano manifolds which include Kähler–Ricci solitons, Mabuchi solitons and base metrics inducing Calabi–Yau cone metrics outside the zero sections of the canonical line bundles (Sasaki–Einstein metrics on the associated $U(1)$-bundles). In this paper, we give a condition for a weighted soliton on a Fano manifold $M_0$ to extend to weighted solitons on small deformations $M_t$ of the Fano manifold $M_0$. More precisely, we show that all the members $M_t$ of the Kuranishi family of a Fano manifold $M_0$ with a weighted soliton have weighted solitons if and only if the dimensions of $T$-equivariant automorphism groups of $M_t$ are equal to that of $M_0$, and also if and only if the $T$-equivariant automorphism groups of $M_t$ are all isomorphic to that of $M_0$, where the weight functions are defined on the moment polytope of the Hamiltonian $T$-action. This generalizes a result of Cao–Sun–Yau–Zhang for Kähler–Einstein metrics.","PeriodicalId":54526,"journal":{"name":"Pure and Applied Mathematics Quarterly","volume":"4 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pure and Applied Mathematics Quarterly","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2024.v20.n2.a6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider weighted solitons on Fano manifolds which include Kähler–Ricci solitons, Mabuchi solitons and base metrics inducing Calabi–Yau cone metrics outside the zero sections of the canonical line bundles (Sasaki–Einstein metrics on the associated $U(1)$-bundles). In this paper, we give a condition for a weighted soliton on a Fano manifold $M_0$ to extend to weighted solitons on small deformations $M_t$ of the Fano manifold $M_0$. More precisely, we show that all the members $M_t$ of the Kuranishi family of a Fano manifold $M_0$ with a weighted soliton have weighted solitons if and only if the dimensions of $T$-equivariant automorphism groups of $M_t$ are equal to that of $M_0$, and also if and only if the $T$-equivariant automorphism groups of $M_t$ are all isomorphic to that of $M_0$, where the weight functions are defined on the moment polytope of the Hamiltonian $T$-action. This generalizes a result of Cao–Sun–Yau–Zhang for Kähler–Einstein metrics.
法诺流形的变形与加权孤子
我们考虑了法诺流形上的加权孤子,其中包括凯勒-里奇孤子、马布奇孤子和在经典线束零段之外诱导卡拉比-尤锥度量的基度量(相关 $U(1)$ 束上的佐佐木-爱因斯坦度量)。本文给出了法诺流形 $M_0$ 上的加权孤子扩展到法诺流形 $M_0$ 的小变形 $M_t$ 上的加权孤子的条件。更确切地说,我们证明了当且仅当 $M_t$ 的 T$ 等价自变群的维数等于 $M_0$ 时,具有加权孤子的法诺流形 $M_0$ 的仓西族的所有成员 $M_t$ 都具有加权孤子、当且仅当 $M_t$ 的 $T$ 变自形群与 $M_0$ 的 $T$ 变自形群同构时,其中权函数定义在哈密顿 $T$ 作用的矩多胞上。这概括了曹-孙-有-张对凯勒-爱因斯坦度量的一个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
30
审稿时长
>12 weeks
期刊介绍: Publishes high-quality, original papers on all fields of mathematics. To facilitate fruitful interchanges between mathematicians from different regions and specialties, and to effectively disseminate new breakthroughs in mathematics, the journal welcomes well-written submissions from all significant areas of mathematics. The editors are committed to promoting the highest quality of mathematical scholarship.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信