Han Che, Hongyan Shen, Qingchun Li, Guoxin Liu, Chenrui Yang, Yunpeng Sun, Shuai Liu
{"title":"Multi‐mode non‐linear inversion of Rayleigh wave dispersion curves with grey wolf optimization and cuckoo search algorithm","authors":"Han Che, Hongyan Shen, Qingchun Li, Guoxin Liu, Chenrui Yang, Yunpeng Sun, Shuai Liu","doi":"10.1002/nsg.12296","DOIUrl":null,"url":null,"abstract":"Dispersion curve inversion is one of the core contents of Rayleigh wave data processing. However, the dispersion curve inversion has the characteristics of multi‐parameter, multi‐extremum as well as nonlinearity. In the face of Rayleigh wave data processing under complex seismic‐geological conditions, it is difficult to reconstruct an underground structure quickly and accurately apply a single global‐searching non‐linear inversion algorithm. For this reason, we proposed a strategy to invert multi‐order mode Rayleigh wave dispersion curves by combining with grey wolf optimization (GWO) and cuckoo search (CS) algorithms. On the basis of introducing the mechanism of iterative chaotic map with infinite collapses (ICMIC) and the strategy of dimension learning–based hunting (DLH), an improved GWO was developed that was called IDGWO (ICMIC and DLH GWO). After searching the near‐optimal region through IDGWO, the CS with a variable step‐size Lévy flight search mechanism was switched adaptively to complete the final inversion. The correctness of our method was verified by the multi‐order mode dispersion curve inversion of a six‐layer high‐velocity interlayer model. Then it was further applied to the processing of real seismic datasets. The research results show that our method fully utilizes the advantages of each of the two global‐searching non‐linear algorithms after integrating IDGWO and CS, while effectively balancing the ability between global search and local exploitation, further improving the convergence speed and inversion accuracy and having good anti‐noise performance.","PeriodicalId":49771,"journal":{"name":"Near Surface Geophysics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Near Surface Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/nsg.12296","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Dispersion curve inversion is one of the core contents of Rayleigh wave data processing. However, the dispersion curve inversion has the characteristics of multi‐parameter, multi‐extremum as well as nonlinearity. In the face of Rayleigh wave data processing under complex seismic‐geological conditions, it is difficult to reconstruct an underground structure quickly and accurately apply a single global‐searching non‐linear inversion algorithm. For this reason, we proposed a strategy to invert multi‐order mode Rayleigh wave dispersion curves by combining with grey wolf optimization (GWO) and cuckoo search (CS) algorithms. On the basis of introducing the mechanism of iterative chaotic map with infinite collapses (ICMIC) and the strategy of dimension learning–based hunting (DLH), an improved GWO was developed that was called IDGWO (ICMIC and DLH GWO). After searching the near‐optimal region through IDGWO, the CS with a variable step‐size Lévy flight search mechanism was switched adaptively to complete the final inversion. The correctness of our method was verified by the multi‐order mode dispersion curve inversion of a six‐layer high‐velocity interlayer model. Then it was further applied to the processing of real seismic datasets. The research results show that our method fully utilizes the advantages of each of the two global‐searching non‐linear algorithms after integrating IDGWO and CS, while effectively balancing the ability between global search and local exploitation, further improving the convergence speed and inversion accuracy and having good anti‐noise performance.
期刊介绍:
Near Surface Geophysics is an international journal for the publication of research and development in geophysics applied to near surface. It places emphasis on geological, hydrogeological, geotechnical, environmental, engineering, mining, archaeological, agricultural and other applications of geophysics as well as physical soil and rock properties. Geophysical and geoscientific case histories with innovative use of geophysical techniques are welcome, which may include improvements on instrumentation, measurements, data acquisition and processing, modelling, inversion, interpretation, project management and multidisciplinary use. The papers should also be understandable to those who use geophysical data but are not necessarily geophysicists.