Control of cucumber mosaic virus in rockmelon using dsRNA-mediated silencing of coat protein and movement protein genes with no deleterious effect on plant phenotype
Dharane Kethiravan, Purabi Mazumdar, Boon Chin Tan, Jennifer Ann Harikrishna
{"title":"Control of cucumber mosaic virus in rockmelon using dsRNA-mediated silencing of coat protein and movement protein genes with no deleterious effect on plant phenotype","authors":"Dharane Kethiravan, Purabi Mazumdar, Boon Chin Tan, Jennifer Ann Harikrishna","doi":"10.1007/s41348-024-00913-1","DOIUrl":null,"url":null,"abstract":"<p>Rockmelon is a popular tropical fruit with high nutritional value. Cucumber mosaic virus (CMV), an aphid-transmitted virus, causes severe damage to rockmelon production. Exogenous application of double-stranded RNA (dsRNA) targeting viral sequences has shown promising results in controlling viral infection but has not been reported for CMV in rockmelon. In the current study, the protective effect of exogenous dsRNAs targeting the CMV coat protein (CP) and movement protein (MP) was tested in rockmelon. The effectiveness of dsRNA-mediated protection was measured by disease severity index (DSI) and compound enzyme-linked immunosorbent assay. The individual dsRNA CP and MP treatments each showed protection by reducing the DSI and virus titre, whilst a combination of dsRNA of CP and MP treatment showed much lower DSI (4.31-fold lower) and virus titre (4.91-fold lower) compared to CMV-inoculated plants without dsRNA treatment. Chlorophyll content, relative water content, plant height and number of leaves were not significantly different between virus challenged dsRNA-treated and mock-inoculated plants. Based on the DSI, two applications containing 9000 ng of dsRNA CP and MP in combination showed maximum CMV protection. Taken together, these results indicate that exogenous treatment containing a combination of dsRNA of CP and MP can control CMV infection in rockmelon.</p>","PeriodicalId":16838,"journal":{"name":"Journal of Plant Diseases and Protection","volume":"24 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Diseases and Protection","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s41348-024-00913-1","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Rockmelon is a popular tropical fruit with high nutritional value. Cucumber mosaic virus (CMV), an aphid-transmitted virus, causes severe damage to rockmelon production. Exogenous application of double-stranded RNA (dsRNA) targeting viral sequences has shown promising results in controlling viral infection but has not been reported for CMV in rockmelon. In the current study, the protective effect of exogenous dsRNAs targeting the CMV coat protein (CP) and movement protein (MP) was tested in rockmelon. The effectiveness of dsRNA-mediated protection was measured by disease severity index (DSI) and compound enzyme-linked immunosorbent assay. The individual dsRNA CP and MP treatments each showed protection by reducing the DSI and virus titre, whilst a combination of dsRNA of CP and MP treatment showed much lower DSI (4.31-fold lower) and virus titre (4.91-fold lower) compared to CMV-inoculated plants without dsRNA treatment. Chlorophyll content, relative water content, plant height and number of leaves were not significantly different between virus challenged dsRNA-treated and mock-inoculated plants. Based on the DSI, two applications containing 9000 ng of dsRNA CP and MP in combination showed maximum CMV protection. Taken together, these results indicate that exogenous treatment containing a combination of dsRNA of CP and MP can control CMV infection in rockmelon.
期刊介绍:
The Journal of Plant Diseases and Protection (JPDP) is an international scientific journal that publishes original research articles, reviews, short communications, position and opinion papers dealing with applied scientific aspects of plant pathology, plant health, plant protection and findings on newly occurring diseases and pests. "Special Issues" on coherent themes often arising from International Conferences are offered.