Total Cuntz semigroup, extension, and Elliott Conjecture with real rank zero

IF 1.5 1区 数学 Q1 MATHEMATICS
Qingnan An, Zhichao Liu
{"title":"Total Cuntz semigroup, extension, and Elliott Conjecture with real rank zero","authors":"Qingnan An, Zhichao Liu","doi":"10.1112/plms.12595","DOIUrl":null,"url":null,"abstract":"In this paper, we exhibit two unital, separable, nuclear <span data-altimg=\"/cms/asset/541c34ab-4a78-46ee-abe9-3ced6d287802/plms12595-math-0002.png\"></span><math altimg=\"urn:x-wiley:00246115:media:plms12595:plms12595-math-0002\" display=\"inline\" location=\"graphic/plms12595-math-0002.png\">\n<semantics>\n<msup>\n<mi mathvariant=\"normal\">C</mi>\n<mo>∗</mo>\n</msup>\n${\\rm C}^*$</annotation>\n</semantics></math>-algebras of stable rank one and real rank zero with the same ordered scaled total K-theory, but they are not isomorphic with each other, which forms a counterexample to the Elliott Classification Conjecture for real rank zero setting. Thus, we introduce an additional normal condition and give a classification result in terms of the total K-theory. For the general setting, with a new invariant, the total Cuntz semigroup [2], we classify a large class of <span data-altimg=\"/cms/asset/e7e53393-6247-4338-a826-81158b3a347b/plms12595-math-0003.png\"></span><math altimg=\"urn:x-wiley:00246115:media:plms12595:plms12595-math-0003\" display=\"inline\" location=\"graphic/plms12595-math-0003.png\">\n<semantics>\n<msup>\n<mi mathvariant=\"normal\">C</mi>\n<mo>∗</mo>\n</msup>\n${\\rm C}^*$</annotation>\n</semantics></math>-algebras obtained from extensions. The total Cuntz semigroup, which distinguishes the algebras of our counterexample, could possibly classify all the <span data-altimg=\"/cms/asset/557f0fef-a2cf-4ebc-946a-e8e32479e4a7/plms12595-math-0004.png\"></span><math altimg=\"urn:x-wiley:00246115:media:plms12595:plms12595-math-0004\" display=\"inline\" location=\"graphic/plms12595-math-0004.png\">\n<semantics>\n<msup>\n<mi mathvariant=\"normal\">C</mi>\n<mo>∗</mo>\n</msup>\n${\\rm C}^*$</annotation>\n</semantics></math>-algebras of stable rank one and real rank zero.","PeriodicalId":49667,"journal":{"name":"Proceedings of the London Mathematical Society","volume":"6 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/plms.12595","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we exhibit two unital, separable, nuclear C ${\rm C}^*$ -algebras of stable rank one and real rank zero with the same ordered scaled total K-theory, but they are not isomorphic with each other, which forms a counterexample to the Elliott Classification Conjecture for real rank zero setting. Thus, we introduce an additional normal condition and give a classification result in terms of the total K-theory. For the general setting, with a new invariant, the total Cuntz semigroup [2], we classify a large class of C ${\rm C}^*$ -algebras obtained from extensions. The total Cuntz semigroup, which distinguishes the algebras of our counterexample, could possibly classify all the C ${\rm C}^*$ -algebras of stable rank one and real rank zero.
实阶为零的总昆兹半群、扩展和埃利奥特猜想
在本文中,我们展示了两个具有相同有序标度总 K 理论的稳定秩为一、实秩为零的单元、可分离、核 C∗${rm C}^*$ 格拉斯,但它们彼此并不同构,这构成了实秩为零的艾略特分类猜想的反例。因此,我们引入了一个额外的正常条件,并给出了总 K 理论的分类结果。在一般情况下,通过新的不变式--总 Cuntz 半群[2],我们对从扩展得到的一大类 C∗$\{rm C}^*$ 算法进行了分类。总 Cuntz 半群区分了我们反例中的数组,它有可能分类所有稳定秩为一和实秩为零的 C∗${rm C}^*$ 数组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
82
审稿时长
6-12 weeks
期刊介绍: The Proceedings of the London Mathematical Society is the flagship journal of the LMS. It publishes articles of the highest quality and significance across a broad range of mathematics. There are no page length restrictions for submitted papers. The Proceedings has its own Editorial Board separate from that of the Journal, Bulletin and Transactions of the LMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信