A Method of Moments Estimator for Interacting Particle Systems and their Mean Field Limit

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Grigorios A. Pavliotis, Andrea Zanoni
{"title":"A Method of Moments Estimator for Interacting Particle Systems and their Mean Field Limit","authors":"Grigorios A. Pavliotis, Andrea Zanoni","doi":"10.1137/22m153848x","DOIUrl":null,"url":null,"abstract":"SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 2, Page 262-288, June 2024. <br/> Abstract.We study the problem of learning unknown parameters in stochastic interacting particle systems with polynomial drift, interaction, and diffusion functions from the path of one single particle in the system. Our estimator is obtained by solving a linear system which is constructed by imposing appropriate conditions on the moments of the invariant distribution of the mean field limit and on the quadratic variation of the process. Our approach is easy to implement as it only requires the approximation of the moments via the ergodic theorem and the solution of a low-dimensional linear system. Moreover, we prove that our estimator is asymptotically unbiased in the limits of infinite data and infinite number of particles (mean field limit). In addition, we present several numerical experiments that validate the theoretical analysis and show the effectiveness of our methodology to accurately infer parameters in systems of interacting particles.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1137/22m153848x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 2, Page 262-288, June 2024.
Abstract.We study the problem of learning unknown parameters in stochastic interacting particle systems with polynomial drift, interaction, and diffusion functions from the path of one single particle in the system. Our estimator is obtained by solving a linear system which is constructed by imposing appropriate conditions on the moments of the invariant distribution of the mean field limit and on the quadratic variation of the process. Our approach is easy to implement as it only requires the approximation of the moments via the ergodic theorem and the solution of a low-dimensional linear system. Moreover, we prove that our estimator is asymptotically unbiased in the limits of infinite data and infinite number of particles (mean field limit). In addition, we present several numerical experiments that validate the theoretical analysis and show the effectiveness of our methodology to accurately infer parameters in systems of interacting particles.
相互作用粒子系统及其平均场极限的矩估计方法
SIAM/ASA 不确定性量化期刊》,第 12 卷第 2 期,第 262-288 页,2024 年 6 月。 摘要:我们研究了在具有多项式漂移、相互作用和扩散函数的随机相互作用粒子系统中,从系统中单个粒子的路径学习未知参数的问题。我们的估计器是通过求解一个线性系统得到的,该系统是通过对均值场极限不变分布的矩和过程的二次变化施加适当条件而构建的。我们的方法很容易实现,因为它只需要通过遍历定理和低维线性系统的求解来近似矩。此外,我们还证明了我们的估计器在无限数据和无限粒子数(平均场极限)的限制下是渐进无偏的。此外,我们还介绍了几个数值实验,这些实验验证了理论分析,并展示了我们的方法在精确推断相互作用粒子系统参数方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信