{"title":"Nonasymptotic Bounds for Suboptimal Importance Sampling","authors":"Carsten Hartmann, Lorenz Richter","doi":"10.1137/21m1427760","DOIUrl":null,"url":null,"abstract":"SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 2, Page 309-346, June 2024. <br/> Abstract. Importance sampling is a popular variance reduction method for Monte Carlo estimation, where an evident question is how to design good proposal distributions. While in most cases optimal (zero-variance) estimators are theoretically possible, in practice only suboptimal proposal distributions are available and it can often be observed numerically that those can reduce statistical performance significantly, leading to large relative errors and therefore counteracting the original intention. Previous analysis on importance sampling has often focused on asymptotic arguments that work well in a large deviations regime. In this article, we provide lower and upper bounds on the relative error in a nonasymptotic setting. They depend on the deviation of the actual proposal from optimality, and we thus identify potential robustness issues that importance sampling may have, especially in high dimensions. We particularly focus on path sampling problems for diffusion processes with nonvanishing noise, for which generating good proposals comes with additional technical challenges. We provide numerous numerical examples that support our findings and demonstrate the applicability of the derived bounds.","PeriodicalId":56064,"journal":{"name":"Siam-Asa Journal on Uncertainty Quantification","volume":"17 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siam-Asa Journal on Uncertainty Quantification","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1137/21m1427760","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 2, Page 309-346, June 2024. Abstract. Importance sampling is a popular variance reduction method for Monte Carlo estimation, where an evident question is how to design good proposal distributions. While in most cases optimal (zero-variance) estimators are theoretically possible, in practice only suboptimal proposal distributions are available and it can often be observed numerically that those can reduce statistical performance significantly, leading to large relative errors and therefore counteracting the original intention. Previous analysis on importance sampling has often focused on asymptotic arguments that work well in a large deviations regime. In this article, we provide lower and upper bounds on the relative error in a nonasymptotic setting. They depend on the deviation of the actual proposal from optimality, and we thus identify potential robustness issues that importance sampling may have, especially in high dimensions. We particularly focus on path sampling problems for diffusion processes with nonvanishing noise, for which generating good proposals comes with additional technical challenges. We provide numerous numerical examples that support our findings and demonstrate the applicability of the derived bounds.
期刊介绍:
SIAM/ASA Journal on Uncertainty Quantification (JUQ) publishes research articles presenting significant mathematical, statistical, algorithmic, and application advances in uncertainty quantification, defined as the interface of complex modeling of processes and data, especially characterizations of the uncertainties inherent in the use of such models. The journal also focuses on related fields such as sensitivity analysis, model validation, model calibration, data assimilation, and code verification. The journal also solicits papers describing new ideas that could lead to significant progress in methodology for uncertainty quantification as well as review articles on particular aspects. The journal is dedicated to nurturing synergistic interactions between the mathematical, statistical, computational, and applications communities involved in uncertainty quantification and related areas. JUQ is jointly offered by SIAM and the American Statistical Association.