Nonasymptotic Bounds for Suboptimal Importance Sampling

IF 2.1 3区 工程技术 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Carsten Hartmann, Lorenz Richter
{"title":"Nonasymptotic Bounds for Suboptimal Importance Sampling","authors":"Carsten Hartmann, Lorenz Richter","doi":"10.1137/21m1427760","DOIUrl":null,"url":null,"abstract":"SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 2, Page 309-346, June 2024. <br/> Abstract. Importance sampling is a popular variance reduction method for Monte Carlo estimation, where an evident question is how to design good proposal distributions. While in most cases optimal (zero-variance) estimators are theoretically possible, in practice only suboptimal proposal distributions are available and it can often be observed numerically that those can reduce statistical performance significantly, leading to large relative errors and therefore counteracting the original intention. Previous analysis on importance sampling has often focused on asymptotic arguments that work well in a large deviations regime. In this article, we provide lower and upper bounds on the relative error in a nonasymptotic setting. They depend on the deviation of the actual proposal from optimality, and we thus identify potential robustness issues that importance sampling may have, especially in high dimensions. We particularly focus on path sampling problems for diffusion processes with nonvanishing noise, for which generating good proposals comes with additional technical challenges. We provide numerous numerical examples that support our findings and demonstrate the applicability of the derived bounds.","PeriodicalId":56064,"journal":{"name":"Siam-Asa Journal on Uncertainty Quantification","volume":"17 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siam-Asa Journal on Uncertainty Quantification","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1137/21m1427760","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 2, Page 309-346, June 2024.
Abstract. Importance sampling is a popular variance reduction method for Monte Carlo estimation, where an evident question is how to design good proposal distributions. While in most cases optimal (zero-variance) estimators are theoretically possible, in practice only suboptimal proposal distributions are available and it can often be observed numerically that those can reduce statistical performance significantly, leading to large relative errors and therefore counteracting the original intention. Previous analysis on importance sampling has often focused on asymptotic arguments that work well in a large deviations regime. In this article, we provide lower and upper bounds on the relative error in a nonasymptotic setting. They depend on the deviation of the actual proposal from optimality, and we thus identify potential robustness issues that importance sampling may have, especially in high dimensions. We particularly focus on path sampling problems for diffusion processes with nonvanishing noise, for which generating good proposals comes with additional technical challenges. We provide numerous numerical examples that support our findings and demonstrate the applicability of the derived bounds.
次优重要性取样的非渐近边界
SIAM/ASA 不确定性量化期刊》第 12 卷第 2 期第 309-346 页,2024 年 6 月。 摘要。重要性抽样是蒙特卡罗估计中一种流行的降低方差的方法,其中一个明显的问题是如何设计好的提议分布。虽然在大多数情况下,理论上最优(零方差)估计器是可能的,但在实践中只有次优的提议分布可供选择,而且经常可以从数值上观察到,这些提议分布会显著降低统计性能,导致较大的相对误差,从而与初衷背道而驰。以往对重要性采样的分析通常侧重于在大偏差机制下运行良好的渐进论证。在本文中,我们提供了非渐近环境下相对误差的下限和上限。它们取决于实际方案与最优性的偏差,因此我们发现了重要性抽样可能存在的潜在稳健性问题,尤其是在高维度下。我们尤其关注具有非消失噪声的扩散过程的路径采样问题,因为在这种情况下,生成好的提议会面临额外的技术挑战。我们提供了大量的数值示例来支持我们的发现,并证明了推导边界的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Siam-Asa Journal on Uncertainty Quantification
Siam-Asa Journal on Uncertainty Quantification Mathematics-Statistics and Probability
CiteScore
3.70
自引率
0.00%
发文量
51
期刊介绍: SIAM/ASA Journal on Uncertainty Quantification (JUQ) publishes research articles presenting significant mathematical, statistical, algorithmic, and application advances in uncertainty quantification, defined as the interface of complex modeling of processes and data, especially characterizations of the uncertainties inherent in the use of such models. The journal also focuses on related fields such as sensitivity analysis, model validation, model calibration, data assimilation, and code verification. The journal also solicits papers describing new ideas that could lead to significant progress in methodology for uncertainty quantification as well as review articles on particular aspects. The journal is dedicated to nurturing synergistic interactions between the mathematical, statistical, computational, and applications communities involved in uncertainty quantification and related areas. JUQ is jointly offered by SIAM and the American Statistical Association.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信