{"title":"Positive Einstein metrics with as the principal orbit","authors":"Hanci Chi","doi":"10.1112/s0010437x24007073","DOIUrl":null,"url":null,"abstract":"<p>We prove that there exists at least one positive Einstein metric on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405172416606-0041:S0010437X24007073:S0010437X24007073_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {HP}^{m+1}\\sharp \\overline {\\mathbb {HP}}^{m+1}$</span></span></img></span></span> for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405172416606-0041:S0010437X24007073:S0010437X24007073_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$m\\geq ~2$</span></span></img></span></span>. Based on the existence of the first Einstein metric, we give a criterion to check the existence of a second Einstein metric on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405172416606-0041:S0010437X24007073:S0010437X24007073_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {HP}^{m+1}\\sharp \\overline {\\mathbb {HP}}^{m+1}$</span></span></img></span></span>. We also investigate the existence of cohomogeneity-one positive Einstein metrics on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405172416606-0041:S0010437X24007073:S0010437X24007073_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {S}^{4m+4}$</span></span></img></span></span> and prove the existence of a non-standard Einstein metric on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405172416606-0041:S0010437X24007073:S0010437X24007073_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {S}^8$</span></span></img></span></span>.</p>","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":"21 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compositio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/s0010437x24007073","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We prove that there exists at least one positive Einstein metric on $\mathbb {HP}^{m+1}\sharp \overline {\mathbb {HP}}^{m+1}$ for $m\geq ~2$. Based on the existence of the first Einstein metric, we give a criterion to check the existence of a second Einstein metric on $\mathbb {HP}^{m+1}\sharp \overline {\mathbb {HP}}^{m+1}$. We also investigate the existence of cohomogeneity-one positive Einstein metrics on $\mathbb {S}^{4m+4}$ and prove the existence of a non-standard Einstein metric on $\mathbb {S}^8$.
期刊介绍:
Compositio Mathematica is a prestigious, well-established journal publishing first-class research papers that traditionally focus on the mainstream of pure mathematics. Compositio Mathematica has a broad scope which includes the fields of algebra, number theory, topology, algebraic and differential geometry and global analysis. Papers on other topics are welcome if they are of broad interest. All contributions are required to meet high standards of quality and originality. The Journal has an international editorial board reflected in the journal content.