Exact Modulus of Continuities for $$\Lambda $$ -Fleming–Viot Processes with Brownian Spatial Motion

Pub Date : 2024-04-03 DOI:10.1007/s10959-024-01326-4
Huili Liu, Xiaowen Zhou
{"title":"Exact Modulus of Continuities for $$\\Lambda $$ -Fleming–Viot Processes with Brownian Spatial Motion","authors":"Huili Liu, Xiaowen Zhou","doi":"10.1007/s10959-024-01326-4","DOIUrl":null,"url":null,"abstract":"<p>For a class of <span>\\(\\Lambda \\)</span>-Fleming–Viot processes with Brownian spatial motion in <span>\\(\\mathbb {R}^d\\)</span> whose associated <span>\\(\\Lambda \\)</span>-coalescents come down from infinity, we obtain sharp global and local moduli of continuity for the ancestral processes recovered from the associated lookdown representations. As applications, we establish both global and local moduli of continuity for the <span>\\(\\Lambda \\)</span>-Fleming–Viot support processes. In particular, if the <span>\\(\\Lambda \\)</span>-coalescent is the Beta<span>\\((2-\\beta ,\\beta )\\)</span> coalescent for <span>\\(\\beta \\in (1,2]\\)</span> with <span>\\(\\beta =2\\)</span> corresponding to Kingman’s coalescent, then for <span>\\(h(t)=\\sqrt{t\\log (1/t)}\\)</span>, the global modulus of continuity holds for the support process with modulus function <span>\\(\\sqrt{2\\beta /(\\beta -1)}h(t)\\)</span>, and both the left and right local moduli of continuity hold for the support process with modulus function <span>\\(\\sqrt{2/(\\beta -1)}h(t)\\)</span>.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10959-024-01326-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For a class of \(\Lambda \)-Fleming–Viot processes with Brownian spatial motion in \(\mathbb {R}^d\) whose associated \(\Lambda \)-coalescents come down from infinity, we obtain sharp global and local moduli of continuity for the ancestral processes recovered from the associated lookdown representations. As applications, we establish both global and local moduli of continuity for the \(\Lambda \)-Fleming–Viot support processes. In particular, if the \(\Lambda \)-coalescent is the Beta\((2-\beta ,\beta )\) coalescent for \(\beta \in (1,2]\) with \(\beta =2\) corresponding to Kingman’s coalescent, then for \(h(t)=\sqrt{t\log (1/t)}\), the global modulus of continuity holds for the support process with modulus function \(\sqrt{2\beta /(\beta -1)}h(t)\), and both the left and right local moduli of continuity hold for the support process with modulus function \(\sqrt{2/(\beta -1)}h(t)\).

分享
查看原文
具有布朗空间运动的 $$\Lambda $$ -Fleming-Viot 过程的精确连续性模量
对于一类在 \(\mathbb {R}^d\) 中具有布朗空间运动的 \(\Lambda \)-Fleming-Viot 过程,其相关的 \(\Lambda \)-coalescents 从无穷大下降,我们为从相关的lookdown表示中恢复的祖先过程获得了尖锐的全局和局部连续性模量。作为应用,我们为 \(\Lambda \)-Fleming-Viot 支持过程建立了全局和局部连续性模量。特别是,如果((2-\beta ,\beta))凝聚态是((1,2]\)的Beta((2-\beta ,\beta))凝聚态,而((\beta =2\)对应于Kingman的凝聚态,那么对于(h(t)=\sqrt{t\log (1/t)}\)、全局连续性模量对于具有模量函数 \(\sqrt{2\beta /(\beta -1)}h(t)\) 的支持过程来说是成立的,而对于具有模量函数 \(\sqrt{2/(\beta -1)}h(t)\) 的支持过程来说,左右局部连续性模量都是成立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信