Hsueh-Chen Lee, Min-Hung Chen, Jay Chu, Ming-Cheng Shiue
{"title":"Numerical simulation of basal crevasses of the tidewater glacier with Galerkin least-squares finite element method","authors":"Hsueh-Chen Lee, Min-Hung Chen, Jay Chu, Ming-Cheng Shiue","doi":"10.1007/s10665-024-10356-0","DOIUrl":null,"url":null,"abstract":"<p>This study employs the two-dimensional nonlinear Stokes ice sheet model and a Galerkin least-squares (GLS) finite element method to investigate iceberg calving at the terminus of tidewater glaciers. We propose an approach based on pressure and normal stress solutions to adjust the grounding line position and present effective principal stress contours and profiles for grounded and notch glaciers with basal crevasses at the grounding line. Our results indicate that the openings of these basal crevasses are significantly affected by water pressure. In addition, stress profiles in ungrounded tidewater glaciers vary from those in fully grounded tidewater glaciers, which could affect iceberg calving. We also conduct numerical experiments to analyze the effects of slip length, notch length, and surface slope and examine the effectiveness of the GLS method in numerical solutions. Our results are in agreement with prior findings in the literature that basal crevasses are significantly affected by water pressure, and stress profiles are significantly different in grounded and ungrounded tidewater glaciers.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10665-024-10356-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study employs the two-dimensional nonlinear Stokes ice sheet model and a Galerkin least-squares (GLS) finite element method to investigate iceberg calving at the terminus of tidewater glaciers. We propose an approach based on pressure and normal stress solutions to adjust the grounding line position and present effective principal stress contours and profiles for grounded and notch glaciers with basal crevasses at the grounding line. Our results indicate that the openings of these basal crevasses are significantly affected by water pressure. In addition, stress profiles in ungrounded tidewater glaciers vary from those in fully grounded tidewater glaciers, which could affect iceberg calving. We also conduct numerical experiments to analyze the effects of slip length, notch length, and surface slope and examine the effectiveness of the GLS method in numerical solutions. Our results are in agreement with prior findings in the literature that basal crevasses are significantly affected by water pressure, and stress profiles are significantly different in grounded and ungrounded tidewater glaciers.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.