Algebraicity of L-values for GSP4 X GL2 and G

IF 0.6 4区 数学 Q3 MATHEMATICS
David Loeffler, Óscar Rivero
{"title":"Algebraicity of L-values for GSP4 X GL2 and G","authors":"David Loeffler, Óscar Rivero","doi":"10.1093/qmath/haae016","DOIUrl":null,"url":null,"abstract":"We prove algebraicity results for critical L-values attached to the group ${\\rm GSp}_4 \\times {\\rm GL}_2$, and for Gan–Gross–Prasad periods which are conjecturally related to central L-values for ${\\rm GSp}_4 \\times {\\rm GL}_2 \\times {\\rm GL}_2$. Our result for ${\\rm GSp}_4 \\times {\\rm GL}_2$ overlaps substantially with recent results of Morimoto, but our methods are very different; these results will be used in a sequel paper to construct a new p-adic L-function for ${\\rm GSp}_4 \\times {\\rm GL}_2$. The results for Gan–Gross–Prasad periods appear to be new. A key aspect is the computation of certain Archimedean zeta integrals, whose p-adic counterparts are also studied in this note.","PeriodicalId":54522,"journal":{"name":"Quarterly Journal of Mathematics","volume":"13 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/qmath/haae016","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove algebraicity results for critical L-values attached to the group ${\rm GSp}_4 \times {\rm GL}_2$, and for Gan–Gross–Prasad periods which are conjecturally related to central L-values for ${\rm GSp}_4 \times {\rm GL}_2 \times {\rm GL}_2$. Our result for ${\rm GSp}_4 \times {\rm GL}_2$ overlaps substantially with recent results of Morimoto, but our methods are very different; these results will be used in a sequel paper to construct a new p-adic L-function for ${\rm GSp}_4 \times {\rm GL}_2$. The results for Gan–Gross–Prasad periods appear to be new. A key aspect is the computation of certain Archimedean zeta integrals, whose p-adic counterparts are also studied in this note.
GSP4 X GL2 和 G 的 L 值代数性
我们证明了附着于${\rm GSp}_4 \times {\rm GL}_2$组的临界L值的代数性结果,以及与${\rm GSp}_4 \times {\rm GL}_2 \times {\rm GL}_2$的中心L值猜想相关的甘-格罗斯-普拉萨德周期的代数性结果。我们关于 ${\rm GSp}_4 \times {\rm GL}_2$ 的结果与森本(Morimoto)的最新结果有很大重叠,但我们的方法却截然不同;这些结果将在续篇论文中用于构建 ${\rm GSp}_4 \times {\rm GL}_2$ 的新 p-adic L 函数。关于甘-格罗斯-普拉萨德周期的结果似乎是新的。其中一个关键方面是某些阿基米德zeta积分的计算,本注释也研究了其p-adic对应物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
36
审稿时长
6-12 weeks
期刊介绍: The Quarterly Journal of Mathematics publishes original contributions to pure mathematics. All major areas of pure mathematics are represented on the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信