Wigner- and Marchenko–Pastur-Type Limit Theorems for Jacobi Processes

Pub Date : 2024-04-11 DOI:10.1007/s10959-024-01332-6
Martin Auer, Michael Voit, Jeannette H. C. Woerner
{"title":"Wigner- and Marchenko–Pastur-Type Limit Theorems for Jacobi Processes","authors":"Martin Auer, Michael Voit, Jeannette H. C. Woerner","doi":"10.1007/s10959-024-01332-6","DOIUrl":null,"url":null,"abstract":"<p>We study Jacobi processes <span>\\((X_{t})_{t\\ge 0}\\)</span> on <span>\\([-1,1]^N\\)</span> and <span>\\([1,\\infty [^N\\)</span> which are motivated by the Heckman–Opdam theory and associated integrable particle systems. These processes depend on three positive parameters and degenerate in the freezing limit to solutions of deterministic dynamical systems. In the compact case, these models tend for <span>\\(t\\rightarrow \\infty \\)</span> to the distributions of the <span>\\(\\beta \\)</span>-Jacobi ensembles and, in the freezing case, to vectors consisting of ordered zeros of one-dimensional Jacobi polynomials. We derive almost sure analogues of Wigner’s semicircle and Marchenko–Pastur limit laws for <span>\\(N\\rightarrow \\infty \\)</span> for the empirical distributions of the <i>N</i> particles on some local scale. We there allow for arbitrary initial conditions, which enter the limiting distributions via free convolutions. These results generalize corresponding stationary limit results in the compact case for <span>\\(\\beta \\)</span>-Jacobi ensembles and, in the deterministic case, for the empirical distributions of the ordered zeros of Jacobi polynomials. The results are also related to free limit theorems for multivariate Bessel processes, <span>\\(\\beta \\)</span>-Hermite and <span>\\(\\beta \\)</span>-Laguerre ensembles, and the asymptotic empirical distributions of the zeros of Hermite and Laguerre polynomials for <span>\\(N\\rightarrow \\infty \\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10959-024-01332-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study Jacobi processes \((X_{t})_{t\ge 0}\) on \([-1,1]^N\) and \([1,\infty [^N\) which are motivated by the Heckman–Opdam theory and associated integrable particle systems. These processes depend on three positive parameters and degenerate in the freezing limit to solutions of deterministic dynamical systems. In the compact case, these models tend for \(t\rightarrow \infty \) to the distributions of the \(\beta \)-Jacobi ensembles and, in the freezing case, to vectors consisting of ordered zeros of one-dimensional Jacobi polynomials. We derive almost sure analogues of Wigner’s semicircle and Marchenko–Pastur limit laws for \(N\rightarrow \infty \) for the empirical distributions of the N particles on some local scale. We there allow for arbitrary initial conditions, which enter the limiting distributions via free convolutions. These results generalize corresponding stationary limit results in the compact case for \(\beta \)-Jacobi ensembles and, in the deterministic case, for the empirical distributions of the ordered zeros of Jacobi polynomials. The results are also related to free limit theorems for multivariate Bessel processes, \(\beta \)-Hermite and \(\beta \)-Laguerre ensembles, and the asymptotic empirical distributions of the zeros of Hermite and Laguerre polynomials for \(N\rightarrow \infty \).

分享
查看原文
雅可比过程的维格纳和马琴科-帕斯图尔型极限定理
我们研究了雅可比过程 \((X_{t})_{t\ge 0}\) on \([-1,1]^N\) and\([1,\infty [^N\) which are motivated by the Heckman-Opdam theory and associated integrable particle systems.这些过程取决于三个正参数,并在冻结极限退化为确定性动力学系统的解。在紧凑情况下,这些模型趋向于贾可比集合的分布,在冻结情况下,趋向于由一维雅可比多项式的有序零点组成的向量。我们为 N 个粒子在某个局部尺度上的经验分布推导出了维格纳半圆和马琴科-帕斯图尔极限定律的近似值。我们允许任意初始条件,它们通过自由卷积进入极限分布。这些结果概括了紧凑情况下 \(\beta \)-雅可比集合的相应静态极限结果,以及确定性情况下雅可比多项式有序零点的经验分布。这些结果还与多变量贝塞尔过程的自由极限定理、\(\beta \)-Hermite和\(\beta \)-Laguerre集合以及\(N\rightarrow \infty \)的Hermite和Laguerre多项式零点的渐近经验分布有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信