Stochastic Differential Equations with Singular Coefficients: The Martingale Problem View and the Stochastic Dynamics View

Pub Date : 2024-04-06 DOI:10.1007/s10959-024-01325-5
Elena Issoglio, Francesco Russo
{"title":"Stochastic Differential Equations with Singular Coefficients: The Martingale Problem View and the Stochastic Dynamics View","authors":"Elena Issoglio, Francesco Russo","doi":"10.1007/s10959-024-01325-5","DOIUrl":null,"url":null,"abstract":"<p>We consider stochastic differential equations (SDEs) with (distributional) drift in negative Besov spaces and random initial condition and investigate them from two different viewpoints. In the first part we set up a martingale problem and show its well-posedness. We then prove further properties of the martingale problem, such as continuity with respect to the drift and the link with the Fokker–Planck equation. We also show that the solutions are weak Dirichlet processes for which we evaluate the quadratic variation of the martingale component. In the second part we identify the dynamics of the solution of the martingale problem by describing the proper associated SDE. Under suitable assumptions we show equivalence with the solution to the martingale problem.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10959-024-01325-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider stochastic differential equations (SDEs) with (distributional) drift in negative Besov spaces and random initial condition and investigate them from two different viewpoints. In the first part we set up a martingale problem and show its well-posedness. We then prove further properties of the martingale problem, such as continuity with respect to the drift and the link with the Fokker–Planck equation. We also show that the solutions are weak Dirichlet processes for which we evaluate the quadratic variation of the martingale component. In the second part we identify the dynamics of the solution of the martingale problem by describing the proper associated SDE. Under suitable assumptions we show equivalence with the solution to the martingale problem.

分享
查看原文
具有奇异系数的随机微分方程:马丁格尔问题观点和随机动力学观点
我们考虑了在负贝索夫空间和随机初始条件下具有(分布)漂移的随机微分方程(SDE),并从两个不同的角度对其进行了研究。在第一部分中,我们提出了一个马氏问题,并证明了它的拟合优度。然后,我们进一步证明了马氏问题的性质,如相对于漂移的连续性以及与福克-普朗克方程的联系。我们还证明了解是弱 Dirichlet 过程,并评估了马氏成分的二次变化。在第二部分中,我们通过描述适当的相关 SDE 来确定马氏问题解的动态。在适当的假设条件下,我们证明了与马氏问题解的等价性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信