On real analytic functions on closed subanalytic domains

Pub Date : 2024-04-12 DOI:10.1007/s00013-024-01983-1
Armin Rainer
{"title":"On real analytic functions on closed subanalytic domains","authors":"Armin Rainer","doi":"10.1007/s00013-024-01983-1","DOIUrl":null,"url":null,"abstract":"<div><p>We show that a function <span>\\(f: X \\rightarrow {\\mathbb {R}}\\)</span> defined on a closed uniformly polynomially cuspidal set <i>X</i> in <span>\\({\\mathbb {R}}^n\\)</span> is real analytic if and only if <i>f</i> is smooth and all its composites with germs of polynomial curves in <i>X</i> are real analytic. The degree of the polynomial curves needed for this is effectively related to the regularity of the boundary of <i>X</i>. For instance, if the boundary of <i>X</i> is locally Lipschitz, then polynomial curves of degree 2 suffice. In this Lipschitz case, we also prove that a function <span>\\(f: X \\rightarrow {\\mathbb {R}}\\)</span> is real analytic if and only if all its composites with germs of quadratic polynomial maps in two variables with images in <i>X</i> are real analytic; here it is not necessary to assume that <i>f</i> is smooth.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00013-024-01983-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-01983-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We show that a function \(f: X \rightarrow {\mathbb {R}}\) defined on a closed uniformly polynomially cuspidal set X in \({\mathbb {R}}^n\) is real analytic if and only if f is smooth and all its composites with germs of polynomial curves in X are real analytic. The degree of the polynomial curves needed for this is effectively related to the regularity of the boundary of X. For instance, if the boundary of X is locally Lipschitz, then polynomial curves of degree 2 suffice. In this Lipschitz case, we also prove that a function \(f: X \rightarrow {\mathbb {R}}\) is real analytic if and only if all its composites with germs of quadratic polynomial maps in two variables with images in X are real analytic; here it is not necessary to assume that f is smooth.

分享
查看原文
关于闭合子解析域上的实解析函数
我们证明,当且仅当 f 是光滑的,并且它与 X 中多项式曲线的胚芽的所有复合都是实解析的时候,定义在 \({\mathbb {R}}^n\) 中封闭的均匀多项式尖顶集合 X 上的函数 \(f: X \rightarrow {mathbb {R}}) 才是实解析的。为此所需的多项式曲线的阶数与 X 边界的规则性密切相关。例如,如果 X 边界是局部 Lipschitz,那么阶数为 2 的多项式曲线就足够了。在这种 Lipschitz 情况下,我们还证明当且仅当函数 \(f: X \rightarrow\ {mathbb {R}} 的所有复合体都是实解析的时候,它与在 X 中具有图像的二变量二次多项式映射的胚芽的复合体才是实解析的;这里不必假设 f 是光滑的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信