A new proof of Rédei’s theorem on the number of directions

IF 0.5 4区 数学 Q3 MATHEMATICS
Gábor Somlai
{"title":"A new proof of Rédei’s theorem on the number of directions","authors":"Gábor Somlai","doi":"10.1007/s00013-024-01979-x","DOIUrl":null,"url":null,"abstract":"<div><p>Rédei and Megyesi proved that the number of directions determined by a <i>p</i>-element subset of <span>\\({\\mathbb F}_p^2\\)</span> is either 1 or at least <span>\\(\\frac{p+3}{2}\\)</span>. The same result was independently obtained by Dress, Klin, and Muzychuk. We give a new and short proof of this result using a lemma proved by Kiss and the author. The new proof relies on a result on polynomials over finite fields.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"122 6","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00013-024-01979-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-01979-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Rédei and Megyesi proved that the number of directions determined by a p-element subset of \({\mathbb F}_p^2\) is either 1 or at least \(\frac{p+3}{2}\). The same result was independently obtained by Dress, Klin, and Muzychuk. We give a new and short proof of this result using a lemma proved by Kiss and the author. The new proof relies on a result on polynomials over finite fields.

雷代方向数定理的新证明
Rédei 和 Megyesi 证明了由\({\mathbb F}_p^2\) 的 p 元素子集决定的方向数要么是 1 要么至少是 \(\frac{p+3}{2}\)。德雷斯、克林和穆兹丘克也独立地得到了同样的结果。我们利用基斯和作者证明的一个lemma,对这一结果给出了一个新的简短证明。新的证明依赖于有限域上多项式的一个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信