Diffeological principal bundles and principal infinity bundles

Pub Date : 2024-04-15 DOI:10.1007/s40062-024-00347-4
Emilio Minichiello
{"title":"Diffeological principal bundles and principal infinity bundles","authors":"Emilio Minichiello","doi":"10.1007/s40062-024-00347-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study diffeological spaces as certain kinds of discrete simplicial presheaves on the site of cartesian spaces with the coverage of good open covers. The Čech model structure on simplicial presheaves provides us with a notion of <span>\\(\\infty \\)</span>-stack cohomology of a diffeological space with values in a diffeological abelian group <i>A</i>. We compare <span>\\(\\infty \\)</span>-stack cohomology of diffeological spaces with two existing notions of Čech cohomology for diffeological spaces in the literature Krepski et al. (Sheaves, principal bundles, and Čech cohomology for diffeological spaces. (2021). arxiv:2111 01032 [math.DG]), Iglesias-Zemmour (Čech-de-Rham Bicomplex in Diffeology (2020). http://math.huji.ac.il/piz/documents/CDRBCID.pdf). Finally, we prove that for a diffeological group <i>G</i>, that the nerve of the category of diffeological principal <i>G</i>-bundles is weak homotopy equivalent to the nerve of the category of <i>G</i>-principal <span>\\(\\infty \\)</span>-bundles on <i>X</i>, bridging the bundle theory of diffeology and higher topos theory.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-024-00347-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study diffeological spaces as certain kinds of discrete simplicial presheaves on the site of cartesian spaces with the coverage of good open covers. The Čech model structure on simplicial presheaves provides us with a notion of \(\infty \)-stack cohomology of a diffeological space with values in a diffeological abelian group A. We compare \(\infty \)-stack cohomology of diffeological spaces with two existing notions of Čech cohomology for diffeological spaces in the literature Krepski et al. (Sheaves, principal bundles, and Čech cohomology for diffeological spaces. (2021). arxiv:2111 01032 [math.DG]), Iglesias-Zemmour (Čech-de-Rham Bicomplex in Diffeology (2020). http://math.huji.ac.il/piz/documents/CDRBCID.pdf). Finally, we prove that for a diffeological group G, that the nerve of the category of diffeological principal G-bundles is weak homotopy equivalent to the nerve of the category of G-principal \(\infty \)-bundles on X, bridging the bundle theory of diffeology and higher topos theory.

分享
查看原文
差分主束和主无穷束
在本文中,我们把差分空间作为具有良好开盖覆盖的笛卡尔空间场上的某类离散简单预铺来研究。我们将衍射空间的 \(\infty \)-stack cohomology 与文献中关于衍射空间的 Čech cohomology 的两个现有概念进行了比较 Krepski 等人 (Sheaves, principal bundles, and Čech cohomology for diffeological spaces.(2021). arxiv:2111 01032 [math.DG])、Iglesias-Zemmour (衍射学中的Čech-de-Rham 双复数 (2020). http://math.huji.ac.il/piz/documents/CDRBCID.pdf)。最后,我们证明对于一个衍射组 G,衍射主 G-束范畴的神经与 X 上的 G-主 \(\infty \)-束范畴的神经是弱同调等价的,从而弥合了衍射学的束理论和高拓扑理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信