A shared compilation stack for distributed-memory parallelism in stencil DSLs

George Bisbas, Anton Lydike, Emilien Bauer, Nick Brown, Mathieu Fehr, Lawrence Mitchell, Gabriel Rodriguez-Canal, Maurice Jamieson, Paul H. J. Kelly, Michel Steuwer, Tobias Grosser
{"title":"A shared compilation stack for distributed-memory parallelism in stencil DSLs","authors":"George Bisbas, Anton Lydike, Emilien Bauer, Nick Brown, Mathieu Fehr, Lawrence Mitchell, Gabriel Rodriguez-Canal, Maurice Jamieson, Paul H. J. Kelly, Michel Steuwer, Tobias Grosser","doi":"arxiv-2404.02218","DOIUrl":null,"url":null,"abstract":"Domain Specific Languages (DSLs) increase programmer productivity and provide\nhigh performance. Their targeted abstractions allow scientists to express\nproblems at a high level, providing rich details that optimizing compilers can\nexploit to target current- and next-generation supercomputers. The convenience\nand performance of DSLs come with significant development and maintenance\ncosts. The siloed design of DSL compilers and the resulting inability to\nbenefit from shared infrastructure cause uncertainties around longevity and the\nadoption of DSLs at scale. By tailoring the broadly-adopted MLIR compiler\nframework to HPC, we bring the same synergies that the machine learning\ncommunity already exploits across their DSLs (e.g. Tensorflow, PyTorch) to the\nfinite-difference stencil HPC community. We introduce new HPC-specific\nabstractions for message passing targeting distributed stencil computations. We\ndemonstrate the sharing of common components across three distinct HPC\nstencil-DSL compilers: Devito, PSyclone, and the Open Earth Compiler, showing\nthat our framework generates high-performance executables based upon a shared\ncompiler ecosystem.","PeriodicalId":501256,"journal":{"name":"arXiv - CS - Mathematical Software","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Mathematical Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.02218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Domain Specific Languages (DSLs) increase programmer productivity and provide high performance. Their targeted abstractions allow scientists to express problems at a high level, providing rich details that optimizing compilers can exploit to target current- and next-generation supercomputers. The convenience and performance of DSLs come with significant development and maintenance costs. The siloed design of DSL compilers and the resulting inability to benefit from shared infrastructure cause uncertainties around longevity and the adoption of DSLs at scale. By tailoring the broadly-adopted MLIR compiler framework to HPC, we bring the same synergies that the machine learning community already exploits across their DSLs (e.g. Tensorflow, PyTorch) to the finite-difference stencil HPC community. We introduce new HPC-specific abstractions for message passing targeting distributed stencil computations. We demonstrate the sharing of common components across three distinct HPC stencil-DSL compilers: Devito, PSyclone, and the Open Earth Compiler, showing that our framework generates high-performance executables based upon a shared compiler ecosystem.
模板 DSL 中分布式内存并行的共享编译栈
特定领域语言(DSL)提高了程序员的工作效率并提供了高性能。它们有针对性的抽象使科学家们能够在高层次上表达问题,提供丰富的细节,优化编译器可以利用这些细节,以当前和下一代超级计算机为目标。DSL 的便利性和性能带来了巨大的开发和维护成本。DSL 编译器的孤岛式设计以及由此导致的无法从共享基础架构中获益的问题,给 DSL 的使用寿命和大规模采用带来了不确定性。通过为高性能计算量身定制广为采用的MLIR编译器框架,我们将机器学习社区已经在其DSL(如Tensorflow、PyTorch)中利用的协同效应带到了有限差分模版高性能计算社区。我们为针对分布式模版计算的消息传递引入了新的 HPC 专用抽象。我们演示了在三种不同的HPC模版-DSL编译器之间共享通用组件:Devito、PSyclone和Open Earth编译器,表明我们的框架基于共享编译器生态系统生成高性能可执行文件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信