Orie Cecil, Nicholas Cohn, Matthew Farthing, Sourav Dutta, Andrew Trautz
{"title":"Examination of Analytical Shear Stress Predictions for Coastal Dune Evolution","authors":"Orie Cecil, Nicholas Cohn, Matthew Farthing, Sourav Dutta, Andrew Trautz","doi":"10.5194/egusphere-2024-855","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> Existing process-based models for simulating coastal foredune evolution largely use the same analytical approach for estimating wind induced surface shear stress distributions over spatially variable topography. Originally developed for smooth, low-sloping hills, these analytical models face significant limitations when the topography of interest exhibits large height-to-length ratios and/or steep, localized features. In this work, we utilize computational fluid dynamics (CFD) to examine the error trends of a commonly used analytical shear stress model for a series of idealized two-dimensional dune profiles. It is observed that the prediction error of the analytical model increases as compared to the CFD simulations for increasing height-to-length ratio and localized slope values. Furthermore, we explore two data-driven methodologies for generating alternative shear stress prediction models, namely, symbolic regression and linear, projection-based, non-intrusive reduced order modeling. These alternative modeling strategies demonstrate reduced overall error, but still suffer in their generalizability to broader sets of dune profiles outside of the training data. Finally, the impact of these improvements to aeolian sediment transport fluxes is examined to demonstrate that even modest improvements to the shear stress prediction can have significant impacts to dune evolution simulations over engineering-relevant timescales.","PeriodicalId":48749,"journal":{"name":"Earth Surface Dynamics","volume":"48 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Surface Dynamics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/egusphere-2024-855","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. Existing process-based models for simulating coastal foredune evolution largely use the same analytical approach for estimating wind induced surface shear stress distributions over spatially variable topography. Originally developed for smooth, low-sloping hills, these analytical models face significant limitations when the topography of interest exhibits large height-to-length ratios and/or steep, localized features. In this work, we utilize computational fluid dynamics (CFD) to examine the error trends of a commonly used analytical shear stress model for a series of idealized two-dimensional dune profiles. It is observed that the prediction error of the analytical model increases as compared to the CFD simulations for increasing height-to-length ratio and localized slope values. Furthermore, we explore two data-driven methodologies for generating alternative shear stress prediction models, namely, symbolic regression and linear, projection-based, non-intrusive reduced order modeling. These alternative modeling strategies demonstrate reduced overall error, but still suffer in their generalizability to broader sets of dune profiles outside of the training data. Finally, the impact of these improvements to aeolian sediment transport fluxes is examined to demonstrate that even modest improvements to the shear stress prediction can have significant impacts to dune evolution simulations over engineering-relevant timescales.
期刊介绍:
Earth Surface Dynamics (ESurf) is an international scientific journal dedicated to the publication and discussion of high-quality research on the physical, chemical, and biological processes shaping Earth''s surface and their interactions on all scales.