Nice Error Basis and Quantum Channel

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
B. V. Rajarama Bhat, Purbayan Chakraborty, Uwe Franz
{"title":"Nice Error Basis and Quantum Channel","authors":"B. V. Rajarama Bhat, Purbayan Chakraborty, Uwe Franz","doi":"10.1142/s1230161224500033","DOIUrl":null,"url":null,"abstract":"<p>The Weyl operators give a convenient basis of <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>ℂ</mi><mo stretchy=\"false\">)</mo></math></span><span></span> which is also orthonormal with respect to the Hilbert-Schmidt inner product. The properties of such a basis can be generalised to the notion of a nice error basis (NEB), as introduced by E. Knill [3]. We can use an NEB of <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>ℂ</mi><mo stretchy=\"false\">)</mo></math></span><span></span> to construct an NEB for <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">Lin</mtext></mstyle><mo stretchy=\"false\">(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>ℂ</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo></math></span><span></span>, the space of linear maps on <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>ℂ</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. Any linear map will then correspond to a <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">×</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span></span> coefficient matrix in the basis decomposition with respect to such an NEB of <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">Lin</mtext></mstyle><mo stretchy=\"false\">(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>ℂ</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo></math></span><span></span>. Positivity, complete (co)positivity or other properties of a linear map can be characterised in terms of such a coefficient matrix.</p>","PeriodicalId":54681,"journal":{"name":"Open Systems & Information Dynamics","volume":"177 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Systems & Information Dynamics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s1230161224500033","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The Weyl operators give a convenient basis of Mn() which is also orthonormal with respect to the Hilbert-Schmidt inner product. The properties of such a basis can be generalised to the notion of a nice error basis (NEB), as introduced by E. Knill [3]. We can use an NEB of Mn() to construct an NEB for Lin(Mn()), the space of linear maps on Mn(). Any linear map will then correspond to a n2×n2 coefficient matrix in the basis decomposition with respect to such an NEB of Lin(Mn()). Positivity, complete (co)positivity or other properties of a linear map can be characterised in terms of such a coefficient matrix.

尼斯误差基础和量子通道
韦尔算子为 Mn(ℂ)提供了一个方便的基,它在希尔伯特-施密特内积方面也是正交的。这种基的性质可以概括为 E. Knill [3] 提出的漂亮误差基 (NEB) 的概念。我们可以使用 Mn(ℂ) 的 NEB 来为 Mn(ℂ) 上的线性映射空间 Lin(Mn(ℂ) 构造一个 NEB。)任何线性映射都将对应于与这样一个 Lin(Mn(ℂ)) 的 NEB 有关的基分解中的 n2×n2 系数矩阵。线性映射的正性、完全(共)正性或其他性质都可以用这样的系数矩阵来表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Open Systems & Information Dynamics
Open Systems & Information Dynamics 工程技术-计算机:信息系统
CiteScore
1.40
自引率
12.50%
发文量
4
审稿时长
>12 weeks
期刊介绍: The aim of the Journal is to promote interdisciplinary research in mathematics, physics, engineering and life sciences centered around the issues of broadly understood information processing, storage and transmission, in both quantum and classical settings. Our special interest lies in the information-theoretic approach to phenomena dealing with dynamics and thermodynamics, control, communication, filtering, memory and cooperative behaviour, etc., in open complex systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信