{"title":"Finite-Dimensional Stinespring Curves Can Approximate Any Dynamics","authors":"Frederik vom Ende","doi":"10.1142/s1230161224500045","DOIUrl":null,"url":null,"abstract":"<p>We generalize a recent result stating that all analytic quantum dynamics can be represented exactly as the reduction of unitary dynamics generated by a time- dependent Hamiltonian. More precisely, we prove that the partial trace over analytic paths of unitaries can approximate any Lipschitz-continuous quantum dynamics arbitrarily well. Equivalently, all such dynamics can be approximated by analytic Kraus operators. We conclude by discussing potential improvements and generalizations of these results, their limitations, and the general challenges one has to overcome when trying to relate dynamics to quantities on the system–environment level.</p>","PeriodicalId":54681,"journal":{"name":"Open Systems & Information Dynamics","volume":"249 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Systems & Information Dynamics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s1230161224500045","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We generalize a recent result stating that all analytic quantum dynamics can be represented exactly as the reduction of unitary dynamics generated by a time- dependent Hamiltonian. More precisely, we prove that the partial trace over analytic paths of unitaries can approximate any Lipschitz-continuous quantum dynamics arbitrarily well. Equivalently, all such dynamics can be approximated by analytic Kraus operators. We conclude by discussing potential improvements and generalizations of these results, their limitations, and the general challenges one has to overcome when trying to relate dynamics to quantities on the system–environment level.
期刊介绍:
The aim of the Journal is to promote interdisciplinary research in mathematics, physics, engineering and life sciences centered around the issues of broadly understood information processing, storage and transmission, in both quantum and classical settings. Our special interest lies in the information-theoretic approach to phenomena dealing with dynamics and thermodynamics, control, communication, filtering, memory and cooperative behaviour, etc., in open complex systems.