Finite-Dimensional Stinespring Curves Can Approximate Any Dynamics

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Frederik vom Ende
{"title":"Finite-Dimensional Stinespring Curves Can Approximate Any Dynamics","authors":"Frederik vom Ende","doi":"10.1142/s1230161224500045","DOIUrl":null,"url":null,"abstract":"<p>We generalize a recent result stating that all analytic quantum dynamics can be represented exactly as the reduction of unitary dynamics generated by a time- dependent Hamiltonian. More precisely, we prove that the partial trace over analytic paths of unitaries can approximate any Lipschitz-continuous quantum dynamics arbitrarily well. Equivalently, all such dynamics can be approximated by analytic Kraus operators. We conclude by discussing potential improvements and generalizations of these results, their limitations, and the general challenges one has to overcome when trying to relate dynamics to quantities on the system–environment level.</p>","PeriodicalId":54681,"journal":{"name":"Open Systems & Information Dynamics","volume":"249 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Systems & Information Dynamics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s1230161224500045","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We generalize a recent result stating that all analytic quantum dynamics can be represented exactly as the reduction of unitary dynamics generated by a time- dependent Hamiltonian. More precisely, we prove that the partial trace over analytic paths of unitaries can approximate any Lipschitz-continuous quantum dynamics arbitrarily well. Equivalently, all such dynamics can be approximated by analytic Kraus operators. We conclude by discussing potential improvements and generalizations of these results, their limitations, and the general challenges one has to overcome when trying to relate dynamics to quantities on the system–environment level.

有限维斯丁尼弹簧曲线可近似任何动力学特性
我们概括了最近的一个结果,即所有解析量子动力学都可以精确地表示为由依赖时间的哈密顿所产生的单元动力学的还原。更准确地说,我们证明了单元解析路径上的部分迹可以任意逼近任何利普齐兹连续量子动力学。等效地,所有此类动力学都可以用解析克劳斯算子逼近。最后,我们将讨论这些结果的潜在改进和概括、它们的局限性,以及在试图将动力学与系统环境层面的量联系起来时必须克服的一般挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Open Systems & Information Dynamics
Open Systems & Information Dynamics 工程技术-计算机:信息系统
CiteScore
1.40
自引率
12.50%
发文量
4
审稿时长
>12 weeks
期刊介绍: The aim of the Journal is to promote interdisciplinary research in mathematics, physics, engineering and life sciences centered around the issues of broadly understood information processing, storage and transmission, in both quantum and classical settings. Our special interest lies in the information-theoretic approach to phenomena dealing with dynamics and thermodynamics, control, communication, filtering, memory and cooperative behaviour, etc., in open complex systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信