An Enhanced Ensemble Learning Method for Sentiment Analysis based on Q-learning

IF 1.5 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Mohammad Savargiv, Behrooz Masoumi, Mohammad Reza Keyvanpour
{"title":"An Enhanced Ensemble Learning Method for Sentiment Analysis based on Q-learning","authors":"Mohammad Savargiv, Behrooz Masoumi, Mohammad Reza Keyvanpour","doi":"10.1007/s40998-024-00718-w","DOIUrl":null,"url":null,"abstract":"<p>Ensemble learning is a powerful technique for combining multiple classifiers to achieve improved performance. However, the challenge of applying ensemble learning to dynamic and diverse data, such as text in sentiment analysis, has limited its effectiveness. In this paper, we propose a novel reinforcement learning-based method for integrating base learners in sentiment analysis. Our method modifies the influence of base learners on the ensemble output based on the problem space, without requiring prior knowledge of the input domain. This approach effectively manages the dynamic behavior of data to achieve greater efficiency and accuracy. Unlike similar methods, our approach eliminates the need for basic knowledge about the input domain. Our experimental results demonstrate the robust performance of the proposed method compared to traditional methods of base learner integration. The significant improvement in various evaluation criteria highlights the effectiveness of our method in handling diverse data behavior. Overall, our work contributes a novel reinforcement learning-based approach to improve the effectiveness of ensemble learning in sentiment analysis.</p>","PeriodicalId":49064,"journal":{"name":"Iranian Journal of Science and Technology-Transactions of Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology-Transactions of Electrical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40998-024-00718-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Ensemble learning is a powerful technique for combining multiple classifiers to achieve improved performance. However, the challenge of applying ensemble learning to dynamic and diverse data, such as text in sentiment analysis, has limited its effectiveness. In this paper, we propose a novel reinforcement learning-based method for integrating base learners in sentiment analysis. Our method modifies the influence of base learners on the ensemble output based on the problem space, without requiring prior knowledge of the input domain. This approach effectively manages the dynamic behavior of data to achieve greater efficiency and accuracy. Unlike similar methods, our approach eliminates the need for basic knowledge about the input domain. Our experimental results demonstrate the robust performance of the proposed method compared to traditional methods of base learner integration. The significant improvement in various evaluation criteria highlights the effectiveness of our method in handling diverse data behavior. Overall, our work contributes a novel reinforcement learning-based approach to improve the effectiveness of ensemble learning in sentiment analysis.

Abstract Image

基于 Q-learning 的情感分析增强型集合学习法
集合学习是一种强大的技术,可将多个分类器结合起来以提高性能。然而,将集合学习应用于动态和多样化数据(如情感分析中的文本)所面临的挑战限制了其有效性。在本文中,我们提出了一种基于强化学习的新方法,用于在情感分析中整合基础学习器。我们的方法基于问题空间来修改基础学习器对集合输出的影响,而无需事先了解输入领域。这种方法能有效管理数据的动态行为,从而提高效率和准确性。与类似方法不同的是,我们的方法无需输入领域的基本知识。我们的实验结果表明,与传统的基础学习器整合方法相比,我们提出的方法具有强大的性能。各种评估标准的明显改善凸显了我们的方法在处理各种数据行为时的有效性。总之,我们的工作为提高情感分析中的集合学习效率贡献了一种基于强化学习的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.50
自引率
4.20%
发文量
93
审稿时长
>12 weeks
期刊介绍: Transactions of Electrical Engineering is to foster the growth of scientific research in all branches of electrical engineering and its related grounds and to provide a medium by means of which the fruits of these researches may be brought to the attentionof the world’s scientific communities. The journal has the focus on the frontier topics in the theoretical, mathematical, numerical, experimental and scientific developments in electrical engineering as well as applications of established techniques to new domains in various electical engineering disciplines such as: Bio electric, Bio mechanics, Bio instrument, Microwaves, Wave Propagation, Communication Theory, Channel Estimation, radar & sonar system, Signal Processing, image processing, Artificial Neural Networks, Data Mining and Machine Learning, Fuzzy Logic and Systems, Fuzzy Control, Optimal & Robust ControlNavigation & Estimation Theory, Power Electronics & Drives, Power Generation & Management The editors will welcome papers from all professors and researchers from universities, research centers, organizations, companies and industries from all over the world in the hope that this will advance the scientific standards of the journal and provide a channel of communication between Iranian Scholars and their colleague in other parts of the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信