Shannon Theory for Wireless Communication in a Resonant Chamber

Amritpal Singh;Thomas L. Marzetta
{"title":"Shannon Theory for Wireless Communication in a Resonant Chamber","authors":"Amritpal Singh;Thomas L. Marzetta","doi":"10.1109/JSAC.2024.3389121","DOIUrl":null,"url":null,"abstract":"A closed electromagnetic resonant chamber (RC) is a highly favorable artificial environment for wireless communication. A pair of antennas within the chamber constitutes a two-port network described by an impedance matrix. We analyze communication between the two antennas when the RC has perfectly conducting walls and the impedance matrix is imaginary-valued. The transmit antenna is driven by a current source, and the receive antenna is connected to a load resistor whose voltage is measured by an infinite-impedance amplifier. There are a countably infinite number of poles in the channel, associated with resonance in the RC, which migrate towards the real frequency axis as the load resistance increases. There are two sources of receiver noise: the Johnson noise of the load resistor, and the internal amplifier noise. An application of Shannon theory yields the capacity of the link, subject to bandwidth and power constraints on the transmit current. For a constant transmit power, capacity increases without bound as the load resistance increases. Surprisingly, the capacity-attaining allocation of transmit power versus frequency avoids placing power close to the resonant frequencies.","PeriodicalId":73294,"journal":{"name":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10500515/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A closed electromagnetic resonant chamber (RC) is a highly favorable artificial environment for wireless communication. A pair of antennas within the chamber constitutes a two-port network described by an impedance matrix. We analyze communication between the two antennas when the RC has perfectly conducting walls and the impedance matrix is imaginary-valued. The transmit antenna is driven by a current source, and the receive antenna is connected to a load resistor whose voltage is measured by an infinite-impedance amplifier. There are a countably infinite number of poles in the channel, associated with resonance in the RC, which migrate towards the real frequency axis as the load resistance increases. There are two sources of receiver noise: the Johnson noise of the load resistor, and the internal amplifier noise. An application of Shannon theory yields the capacity of the link, subject to bandwidth and power constraints on the transmit current. For a constant transmit power, capacity increases without bound as the load resistance increases. Surprisingly, the capacity-attaining allocation of transmit power versus frequency avoids placing power close to the resonant frequencies.
谐振腔中的无线通信香农理论
封闭式电磁谐振腔(RC)是一种非常适合无线通信的人工环境。室内的一对天线构成了一个由阻抗矩阵描述的双端口网络。我们分析了当 RC 具有完全导电的墙壁且阻抗矩阵为虚值时两个天线之间的通信情况。发射天线由一个电流源驱动,接收天线连接到一个负载电阻器,其电压由一个无限阻抗放大器测量。信道中有无数个极点,与 RC 中的共振有关,随着负载电阻的增加,这些极点向实际频率轴移动。接收器噪声有两个来源:负载电阻的约翰逊噪声和放大器内部噪声。应用香农理论可以得出链路的容量,但要受到带宽和发射电流功率的限制。在发射功率不变的情况下,随着负载电阻的增大,链路容量会无限制地增大。令人惊讶的是,发射功率与频率的容量分配避免了将功率置于共振频率附近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信