Enhanced photocatalytic CO2 reduction by controlled oxygen vacancy generation and co-constructed heterojunction strategy for Pd/CeO2†

IF 6.4 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Fanlin Kong, Xiaoyan Lu, Jing Xie, Zhenjiang Lu, Jindou Hu and Yali Cao
{"title":"Enhanced photocatalytic CO2 reduction by controlled oxygen vacancy generation and co-constructed heterojunction strategy for Pd/CeO2†","authors":"Fanlin Kong, Xiaoyan Lu, Jing Xie, Zhenjiang Lu, Jindou Hu and Yali Cao","doi":"10.1039/D4QI00581C","DOIUrl":null,"url":null,"abstract":"<p >Artificial photoreduction of carbon dioxide (CO<small><sub>2</sub></small>) into useful chemicals using solar energy requires stable photocatalysts with efficient charge separation and effective CO<small><sub>2</sub></small> adsorption. Herein, the CeO<small><sub>2</sub></small>-supported Pd catalysts (Pd/CeO<small><sub>2</sub></small>-Vo(r)) with rich oxygen vacancies (Vo) are prepared using the thermal reduction method. The formation of heterojunctions between Pd nanoparticles and CeO<small><sub>2</sub></small> hollow spheres promotes the transfer of photogenerated electrons, and the Vo of CeO<small><sub>2</sub></small> exhibits an electron capture effect, thus this synergistic effect effectively enhances light absorption and facilitates the separation and transfer of photogenerated electrons. Therefore the Pd/CeO<small><sub>2</sub></small>-Vo(r) exhibits excellent photocatalytic CO<small><sub>2</sub></small> reduction to CO with a production rate of 210.9 μmol h<small><sup>−1</sup></small> g<small><sup>−1</sup></small>, which is more competitive than most of the reported photocatalysts. <em>In situ</em> FTIR is used to further reveal the photocatalytic mechanism of CO<small><sub>2</sub></small>, proving that the key intermediates COOH* and CO* are formed during the photoreduction process. This innovation provides a convenient method for designing photocatalysts with significant CO<small><sub>2</sub></small> capture capacity, which could provide novel insights into the photocatalytic reduction of CO<small><sub>2</sub></small>.</p>","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":" 10","pages":" 2932-2944"},"PeriodicalIF":6.4000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/qi/d4qi00581c","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial photoreduction of carbon dioxide (CO2) into useful chemicals using solar energy requires stable photocatalysts with efficient charge separation and effective CO2 adsorption. Herein, the CeO2-supported Pd catalysts (Pd/CeO2-Vo(r)) with rich oxygen vacancies (Vo) are prepared using the thermal reduction method. The formation of heterojunctions between Pd nanoparticles and CeO2 hollow spheres promotes the transfer of photogenerated electrons, and the Vo of CeO2 exhibits an electron capture effect, thus this synergistic effect effectively enhances light absorption and facilitates the separation and transfer of photogenerated electrons. Therefore the Pd/CeO2-Vo(r) exhibits excellent photocatalytic CO2 reduction to CO with a production rate of 210.9 μmol h−1 g−1, which is more competitive than most of the reported photocatalysts. In situ FTIR is used to further reveal the photocatalytic mechanism of CO2, proving that the key intermediates COOH* and CO* are formed during the photoreduction process. This innovation provides a convenient method for designing photocatalysts with significant CO2 capture capacity, which could provide novel insights into the photocatalytic reduction of CO2.

Abstract Image

通过控制氧空位生成和共建异质结 Pd/CeO2 策略增强光催化二氧化碳还原能力
利用太阳能将二氧化碳(CO2)人工光还原成有用的化学物质需要具有高效电荷分离和有效吸附 CO2 的稳定光催化剂。本文采用热还原法制备了富氧空位(Vo)的 CeO2 支持钯催化剂(Vo-R-Pd/CeO2)。Pd 纳米颗粒与 CeO2 中空球体之间形成的异质结促进了光生电子的转移,而 CeO2 中的 Vo 具有电子捕获效应,因此这种协同效应可有效增强光吸收,促进光生电子的分离和转移。因此,Vo-R-Pd/CeO2 具有优异的光催化 CO2 还原成 CO 的性能,生成率达到 210.9 μmol h-1 g-1,比大多数已报道的光催化剂更具竞争力。利用原位傅立叶变换红外光谱进一步揭示了 CO2 的光催化机理,证明在光还原过程中形成了关键的中间产物 COOH* 和 CO*。这一创新为设计具有显著二氧化碳捕获能力的光催化剂提供了一种便捷的方法,可为二氧化碳的光催化还原提供新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信