Production of [211At]NaAt solution under GMP compliance for investigator-initiated clinical trial

IF 4.4 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Sadahiro Naka, Kazuhiro Ooe, Yoshifumi Shirakami, Kenta Kurimoto, Toshihiro Sakai, Kazuhiro Takahashi, Atsushi Toyoshima, Yang Wang, Hiromitsu Haba, Hiroki Kato, Noriyuki Tomiyama, Tadashi Watabe
{"title":"Production of [211At]NaAt solution under GMP compliance for investigator-initiated clinical trial","authors":"Sadahiro Naka,&nbsp;Kazuhiro Ooe,&nbsp;Yoshifumi Shirakami,&nbsp;Kenta Kurimoto,&nbsp;Toshihiro Sakai,&nbsp;Kazuhiro Takahashi,&nbsp;Atsushi Toyoshima,&nbsp;Yang Wang,&nbsp;Hiromitsu Haba,&nbsp;Hiroki Kato,&nbsp;Noriyuki Tomiyama,&nbsp;Tadashi Watabe","doi":"10.1186/s41181-024-00257-z","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The alpha emitter astatine-211 (<sup>211</sup>At) is garnering attention as a novel targeted alpha therapy for patients with refractory thyroid cancer resistant to conventional therapy using beta emitter radioiodine (<sup>131</sup>I). Herein, we aimed to establish a robust method for the manufacturing and quality control of [<sup>211</sup>At]NaAt solution for intravenous administration under the good manufacturing practice guidelines for investigational products to conduct an investigator-initiated clinical trial.</p><h3>Results</h3><p><sup>211</sup>At was separated and purified via dry distillation using irradiated Bi plates containing <sup>211</sup>At obtained by the nuclear reaction of <sup>209</sup>Bi(<sup>4</sup>He, 2n)<sup>211</sup>At. After purification, the <sup>211</sup>At trapped in the cold trap was collected in a reaction vessel using 15 mL recovery solution (1% ascorbic acid and 2.3% sodium hydrogen carbonate). After stirring the <sup>211</sup>At solution for 1 h inside a closed system, the reaction solution was passed through a sterile 0.22 μm filter placed in a Grade A controlled area and collected in a product vial to prepare the [<sup>211</sup>At]NaAt solution. According to the 3-lot tests, decay collected radioactivity and radiochemical yield of [<sup>211</sup>At]NaAt were 78.8 ± 6.0 MBq and 40 ± 3%, respectively. The radiochemical purity of [<sup>211</sup>At]At<sup>−</sup> obtained via ion-pair chromatography at the end of synthesis (EOS) was 97 ± 1%, and remained &gt; 96% 6 h after EOS; it was detected at a retention time (RT) 3.2–3.3 min + RT of I<sup>−</sup>. LC-MS analysis indicated that this principal peak corresponded with an astatide ion (m/z = 210.988046). In gamma-ray spectrometry, the <sup>211</sup>At-related peaks were identified (X-ray: 76.9, 79.3, 89.3, 89.8, and 92.3 keV; γ-ray: 569.7 and 687.0 keV), whereas the peak at 245.31 keV derived from <sup>210</sup>At was not detected during the 22 h continuous measurement. The target material, Bi, was below the 9 ng/mL detection limit in all lots of the finished product. The pH of the [<sup>211</sup>At]NaAt solution was 7.9–8.6; the concentration of ascorbic acid was 9–10 mg/mL. Other quality control tests, including endotoxin and sterility tests, confirmed that the [<sup>211</sup>At]NaAt solution met all quality standards.</p><h3>Conclusions</h3><p>We successfully established a stable method of [<sup>211</sup>At]NaAt solution that can be administered to humans intravenously as an investigational product.</p></div>","PeriodicalId":534,"journal":{"name":"EJNMMI Radiopharmacy and Chemistry","volume":"9 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ejnmmipharmchem.springeropen.com/counter/pdf/10.1186/s41181-024-00257-z","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Radiopharmacy and Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s41181-024-00257-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Background

The alpha emitter astatine-211 (211At) is garnering attention as a novel targeted alpha therapy for patients with refractory thyroid cancer resistant to conventional therapy using beta emitter radioiodine (131I). Herein, we aimed to establish a robust method for the manufacturing and quality control of [211At]NaAt solution for intravenous administration under the good manufacturing practice guidelines for investigational products to conduct an investigator-initiated clinical trial.

Results

211At was separated and purified via dry distillation using irradiated Bi plates containing 211At obtained by the nuclear reaction of 209Bi(4He, 2n)211At. After purification, the 211At trapped in the cold trap was collected in a reaction vessel using 15 mL recovery solution (1% ascorbic acid and 2.3% sodium hydrogen carbonate). After stirring the 211At solution for 1 h inside a closed system, the reaction solution was passed through a sterile 0.22 μm filter placed in a Grade A controlled area and collected in a product vial to prepare the [211At]NaAt solution. According to the 3-lot tests, decay collected radioactivity and radiochemical yield of [211At]NaAt were 78.8 ± 6.0 MBq and 40 ± 3%, respectively. The radiochemical purity of [211At]At obtained via ion-pair chromatography at the end of synthesis (EOS) was 97 ± 1%, and remained > 96% 6 h after EOS; it was detected at a retention time (RT) 3.2–3.3 min + RT of I. LC-MS analysis indicated that this principal peak corresponded with an astatide ion (m/z = 210.988046). In gamma-ray spectrometry, the 211At-related peaks were identified (X-ray: 76.9, 79.3, 89.3, 89.8, and 92.3 keV; γ-ray: 569.7 and 687.0 keV), whereas the peak at 245.31 keV derived from 210At was not detected during the 22 h continuous measurement. The target material, Bi, was below the 9 ng/mL detection limit in all lots of the finished product. The pH of the [211At]NaAt solution was 7.9–8.6; the concentration of ascorbic acid was 9–10 mg/mL. Other quality control tests, including endotoxin and sterility tests, confirmed that the [211At]NaAt solution met all quality standards.

Conclusions

We successfully established a stable method of [211At]NaAt solution that can be administered to humans intravenously as an investigational product.

按照 GMP 标准生产[211At]NaAt 溶液,用于研究者发起的临床试验
背景α发射体砹-211(211At)作为一种新型α靶向疗法备受关注,可用于治疗对使用β发射体放射性碘(131I)的传统疗法耐药的难治性甲状腺癌患者。在此,我们旨在根据研究产品的良好生产规范指南,建立一种用于静脉注射的[211At]NaAt溶液的稳健生产和质量控制方法,以开展由研究者发起的临床试验。结果211At通过干馏分离和纯化,使用的辐照铋板含有通过209Bi(4He, 2n)211At核反应获得的211At。纯化后,使用 15 mL 回收溶液(1% 抗坏血酸和 2.3% 碳酸氢钠)将冷阱中截留的 211At 收集到反应容器中。在密闭系统中搅拌 211At 溶液 1 小时后,反应溶液通过放置在 A 级控制区的 0.22 μm 无菌过滤器,并收集到产品瓶中,制备成 [211At]NaAt 溶液。根据三批试验,[211At]NaAt 的衰变收集放射性和放射化学收率分别为 78.8 ± 6.0 MBq 和 40 ± 3%。在合成结束(EOS)时,通过离子对色谱法获得的[211At]At-的放射化学纯度为 97 ± 1%,在 EOS 6 小时后仍为 96%;在 I- 的保留时间(RT)3.2-3.3 分钟 + RT 时检测到。LC-MS 分析表明,该主峰与砹离子(m/z = 210.988046)相对应。在伽马射线光谱分析中,确定了与 211At 有关的峰值(X 射线:76.9、79.3、89.3、89.8 和 92.3 千伏;γ 射线:569.7 和 687.0 千伏),而在 22 小时的连续测量中,没有检测到来自 210At 的 245.31 千伏的峰值。在所有批次的成品中,目标物质 Bi 均低于 9 纳克/毫升的检测限。211At]NaAt 溶液的 pH 值为 7.9-8.6;抗坏血酸的浓度为 9-10 毫克/毫升。结论我们成功建立了[211At]NaAt溶液的稳定方法,该溶液可作为研究产品静脉注射给人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
8.70%
发文量
30
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信