Multi-Axis Attention with Convolution Parallel Block for Organoid Segmentation

IF 15.3 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Pengwei Hu;Xun Deng;Feng Tan;Lun Hu
{"title":"Multi-Axis Attention with Convolution Parallel Block for Organoid Segmentation","authors":"Pengwei Hu;Xun Deng;Feng Tan;Lun Hu","doi":"10.1109/JAS.2023.124026","DOIUrl":null,"url":null,"abstract":"Dear Editor, This letter presents an organoid segmentation model based on multi-axis attention with convolution parallel block. MACPNet adeptly captures dynamic dependencies within bright-field microscopy images, improving global modeling beyond conventional UNet. It excels in sparse global interactions and concurrent computation, yielding enhanced segmentation. MACPNet stands out for its prowess in multi-scale data capture, aligned with diverse distance dependencies inherent in organoid images. Experimental results show that the proposed model outperforms several state-of-the-art methods as well as multiple baseline models in accurate organoid segmentation.","PeriodicalId":54230,"journal":{"name":"Ieee-Caa Journal of Automatica Sinica","volume":"11 5","pages":"1295-1297"},"PeriodicalIF":15.3000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10500717","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieee-Caa Journal of Automatica Sinica","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10500717/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Dear Editor, This letter presents an organoid segmentation model based on multi-axis attention with convolution parallel block. MACPNet adeptly captures dynamic dependencies within bright-field microscopy images, improving global modeling beyond conventional UNet. It excels in sparse global interactions and concurrent computation, yielding enhanced segmentation. MACPNet stands out for its prowess in multi-scale data capture, aligned with diverse distance dependencies inherent in organoid images. Experimental results show that the proposed model outperforms several state-of-the-art methods as well as multiple baseline models in accurate organoid segmentation.
利用卷积并行块的多轴注意力进行类器官分割
亲爱的编辑,这封信介绍了一种基于多轴注意力与卷积并行块的类器官分割模型。MACPNet 善于捕捉明视野显微图像中的动态依赖关系,改进了全局建模,超越了传统的 UNet。它在稀疏全局交互和并发计算方面表现出色,从而增强了分割效果。MACPNet 在多尺度数据捕捉方面表现突出,与类器官图像中固有的各种距离依赖关系相一致。实验结果表明,在准确的类器官分割方面,所提出的模型优于几种最先进的方法以及多个基线模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ieee-Caa Journal of Automatica Sinica
Ieee-Caa Journal of Automatica Sinica Engineering-Control and Systems Engineering
CiteScore
23.50
自引率
11.00%
发文量
880
期刊介绍: The IEEE/CAA Journal of Automatica Sinica is a reputable journal that publishes high-quality papers in English on original theoretical/experimental research and development in the field of automation. The journal covers a wide range of topics including automatic control, artificial intelligence and intelligent control, systems theory and engineering, pattern recognition and intelligent systems, automation engineering and applications, information processing and information systems, network-based automation, robotics, sensing and measurement, and navigation, guidance, and control. Additionally, the journal is abstracted/indexed in several prominent databases including SCIE (Science Citation Index Expanded), EI (Engineering Index), Inspec, Scopus, SCImago, DBLP, CNKI (China National Knowledge Infrastructure), CSCD (Chinese Science Citation Database), and IEEE Xplore.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信